JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (6): 113-120.doi: 10.3969/j.issn.1000-2006.201808045
Previous Articles Next Articles
CHEN Yuheng1(), LÜ Yiwei2, YIN Xiaojie1,*(
)
Received:
2018-08-24
Revised:
2019-09-08
Online:
2019-11-30
Published:
2019-11-30
Contact:
YIN Xiaojie
E-mail:edenchen1226@outlook.com;xjyinanne@163.com
CLC Number:
CHEN Yuheng, LÜ Yiwei, YIN Xiaojie. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 113-120.
Table 1
The 12 common coniferous tree species and their records in Southwest"
代号 code | 中文名 Chinese name | 学名 species name | 样点数 records number |
---|---|---|---|
Af | 冷杉 | Abies fabri (Mast.) Craib | 27 |
Ca | 银杉 | Cathaya argyrophylla Chun et Kuang | 14 |
Cef | 三尖杉 | Cephalotaxus fortunei Hooker | 297 |
Cl | 杉木 | Cunninghamia lanceolata (Lambert) Hooker | 287 |
Cd | 干香柏 | Cupressus duclouxiana Hickel | 61 |
Cuf | 柏木 | Cupressus funebris Endlicher | 215 |
Fh | 福建柏 | Fokienia hodginsii (Dunn) Henry et Thomas | 95 |
Ke | 云南油杉 | Keteleeria evelyniana Masters | 57 |
Mg | 水杉 | Metasequoia glyptostroboides Hu et Cheng | 47 |
Pb | 油麦吊云杉 | Picea brachytyla (Franchet) Pritzel | 52 |
Py | 云南松 | Pinus yunnanensis Franchet | 153 |
Tw | 红豆杉 | Taxus wallichiana var. chinensis (Pilger) Florin | 81 |
Table 2
The contribution of 12 common coniferous tree species in southwest China in models"
气候因子(代号) climate scenario (code) | 各因子在不同树种模型计算中的贡献占比/% contribution in models for every scenarios | 贡献率/% contribution ratio | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Af | Ca | Cef | Cl | Cd | Cuf | Fh | Ke | Mg | Pb | Py | Tw | ||
年平均气温 (bio 1) | 0 | 0 | 1.3 | 1.9 | 0.2 | 0.2 | 2 | 4.4 | 0 | 0 | 0.2 | 1.9 | 1.0 |
平均气温日较差 (bio 2) | 0 | 10.5 | 1.8 | 1.4 | 0.1 | 0.9 | 0 | 0 | 0 | 0.1 | 1.2 | 0 | 1.3 |
等温性 (bio 3) | 8.9 | 4.6 | 0.5 | 1 | 9.9 | 0.3 | 0.3 | 13.8 | 0.6 | 25.4 | 8.8 | 4.1 | 6.5 |
气温季节变动系数(bio 4) | 23.4 | 3.4 | 2.2 | 0.7 | 39.7 | 2.4 | 3.3 | 50.5 | 2.9 | 15.4 | 45.7 | 9.1 | 16.6 |
最热月最高气温(bio 5) | 0.1 | 0 | 0 | 0.5 | 2.5 | 0.1 | 0 | 0 | 0 | 0 | 0.3 | 0.2 | 0.3 |
最冷月最低气温(bio 6) | 6.5 | 70.4 | 20.1 | 14.1 | 11.1 | 33.1 | 0.9 | 7.2 | 3.6 | 14.6 | 6.8 | 39.9 | 19.0 |
气温年较差(bio 7) | 0 | 1.3 | 4.4 | 2.2 | 0 | 5 | 2.5 | 4 | 0 | 8.4 | 4 | 5.9 | 3.1 |
最湿季平均气温(bio 8) | 0 | 1.1 | 2.2 | 2.8 | 1.4 | 1.6 | 4.9 | 1.3 | 0.9 | 0 | 0.2 | 2.1 | 1.5 |
最干季平均气温(bio 9) | 0 | 0 | 0.4 | 0.2 | 0 | 0.1 | 0.2 | 0 | 0 | 0 | 1.9 | 0.4 | 0.3 |
最热季平均气温(bio 10) | 0 | 0 | 3.6 | 1.9 | 6.6 | 1 | 1.5 | 0 | 9.5 | 15.3 | 5.1 | 0.4 | 3.7 |
最冷季平均气温(bio 11) | 0 | 0 | 5.4 | 1.9 | 0.8 | 3.1 | 0.5 | 1 | 0 | 0 | 0.1 | 0.1 | 1.1 |
年降水量(bio 12) | 38.4 | 0 | 33.1 | 42.8 | 20.3 | 45.3 | 4.2 | 15.4 | 0.9 | 19.8 | 23 | 27.7 | 22.6 |
最湿月降水量(bio 13) | 0.3 | 0 | 0.9 | 0 | 0 | 0 | 0 | 0.5 | 0.5 | 0 | 0 | 0.8 | 0.3 |
最干月降水量(bio 14) | 0 | 0 | 21.6 | 0 | 5.4 | 3.5 | 78.8 | 0 | 79.6 | 0.2 | 0.2 | 1 | 15.9 |
降水量季节性变化系数(bio 15) | 16.6 | 8.6 | 0.8 | 0.4 | 0.2 | 0.8 | 0.6 | 0.1 | 0.6 | 0.1 | 0.3 | 0.6 | 2.5 |
最湿季降水量(bio 16) | 0 | 0 | 0.1 | 0.1 | 0.6 | 0.1 | 0 | 0.2 | 0.5 | 0.6 | 0.1 | 0 | 0.2 |
最干季降水量(bio 17) | 0.6 | 0 | 0.1 | 27 | 1.2 | 0 | 0.2 | 0.2 | 0.1 | 0 | 0 | 0 | 2.5 |
最热季降水量(bio 18) | 0 | 0 | 0.9 | 0.1 | 0 | 0.1 | 0.1 | 1.3 | 0.1 | 0 | 1.6 | 0 | 0.4 |
最冷季降水量(bio 19) | 5.2 | 0 | 0.7 | 1 | 0.1 | 2.4 | 0 | 0.3 | 0 | 0.1 | 0.5 | 5.8 | 1.3 |
AUC2 | 0.98 | 0.89 | 0.85 | 0.82 | 0.94 | 0.86 | 0.87 | 0.96 | 0.84 | 0.97 | 0.94 | 0.86 |
Table 3
The climate suitable area of 12 common coniferous tree species in southwest China in different periods 万km2 "
树种 species | 适宜区面积 suitable climate habitat | 最适区面积 the most suitable climate habitat | ||
---|---|---|---|---|
当前 incurrent | 2070 RCP4.5 | 当前 incurrent | 2070 RCP4.5 | |
冷杉 | 32.92 | 45.40 | 12.85 | 15.52 |
银杉 | 83.88 | 88.89 | 18.00 | 17.86 |
三尖杉 | 99.72 | 167.53 | 21.44 | 109.94 |
杉木 | 122.91 | 166.59 | 22.50 | 109.19 |
干香柏 | 37.86 | 65.25 | 15.80 | 38.36 |
柏木 | 111.77 | 156.61 | 21.47 | 87.00 |
福建柏 | 73.56 | 81.74 | 12.97 | 30.97 |
云南油杉 | 21.63 | 16.44 | 9.91 | 7.03 |
水杉 | 75.90 | 141.18 | 20.32 | 86.70 |
油麦吊云杉 | 21.41 | 28.44 | 9.74 | 9.40 |
云南松 | 40.56 | 70.53 | 17.53 | 47.41 |
红豆杉 | 69.98 | 126.18 | 17.91 | 54.49 |
[1] |
冯建孟, 董晓东, 徐成东, 等. 取样尺度效应对滇西北地区种子植物物种多样性纬度分布格局的影响[J]. 生物多样性, 2009, 17(3):266-271. DOI: 10.3724/SP.J.1003.2009.08265.
doi: 10.3724/SP.J.1003.2009.08265 |
FENG J M, DONG X D, XU C D, et al. Effects of sampling scale on latitudinal patterns of species diversity in seed plants in northwestern Yunnan, China[J]. Biodiversity Science, 2009, 17(3):266-271.
doi: 10.3724/SP.J.1003.2009.08265 |
|
[2] | 杨庆媛. 西南丘陵山地区土地整理与区域生态安全研究[J]. 地理研究, 2003, 22(6):698-708. DOI: 10.3321/j.issn:1000-0585.2003.06.004. |
YANG Q Y. A study on the issue of land consolidation and eco-security in hilly and mountainous regions of southwest China[J]. Geographical Research, 2003, 22(6):698-708. | |
[3] | FINLAYSON M, CRUZ R D, DAVIDSON N, et al. Millennium ecosystem assessment: ecosystems and human well-being: wetlands and water synreport[R]. Washington DC: World Resources Institute, 2005. |
[4] | KERR R A. A stronger IPCC report[J]. Science, 2013, 342(6154):23. DOI: 10.1126/science.342.6154.23-b. |
[5] | Vié JEAN C, HILTON T C, STUART S N. Wildlife in a changing world : an analysis of the 2008 IUCN red list of threatened species[R]. Switzerland: International Union for Conservation of Nature, 2009. |
[6] | 刘国华. 西南生态安全格局形成机制及演变机理[J]. 生态学报, 2016, 36(22):7088-7091.DOI: 10.5846/stxb201611212364. |
LIU G H. Formation and evolution mechanism of ecological security pattern in southwest China[J]. Acta Ecologica Sinica, 2016, 36(22):7088-7091. | |
[7] | 杨志香, 周广胜, 殷晓洁, 等. 中国兴安落叶松天然林地理分布及其气候适宜性[J]. 生态学杂志, 2014, 33(6):1429-1436. DOI: 10.13292/j.1000-4890.2014.0122. |
YANG Z X, ZHOU G S, YIN X J, et al. Geographic distribution of Larix gmelinii natural forest in China and its climatic suitability [J]. Chinese Journal of Ecology, 2014, 33(6):1429-1436. | |
[8] | 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1):10-19. DOI: 10.12006/j.issn,1673-1719.2015.113. |
ZHANG Y W, ZHANG L, XU Y. Simulations and projections of the surface air temperature in China by CMIP5 models[J]. Climate Change Research, 2016, 12(1):10-19. | |
[9] | 初祁, 徐宗学, 刘文丰, 等. 24个CMIP5模式对长江流域模拟能力评估[J]. 长江流域资源与环境, 2015, 24(1):81-89. DOI: 10.11870/cjlyzyyhj201501011. |
CHU Q, XU Z X, LIU W F, et al. Assessment on 24 global climate models in the CMIP5 over the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2015, 24(1):81-89. | |
[10] |
PHILLIPS S J, DUDÍK M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2):161-175. DOI: 10.1111/j.0906-7590.2008.5203.x.
doi: 10.1111/j.0906-7590.2008.5203.x |
[11] |
PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4):231-259. DOI: 10.1016/j.ecolmodel.2005.03.026.
doi: 10.1016/j.ecolmodel.2005.03.026 |
[12] | 唐继洪, 程云霞, 罗礼智, 等. 基于MaxEnt模型的不同气候变化情景下我国草地螟越冬区预测[J]. 生态学报, 2017, 37(14):4852-4863.DOI: 10.5846/stxb201604040608. |
TANG J H, CHENG Y X, LUO L Z, et al. MaxEnt-based prediction of overwintering areas of Loxostege sticticalis in China under different climate change scenarios [J]. Acta Ecologica Sinica, 2017, 37(14):4852-4863. | |
[13] | 殷晓洁, 周广胜, 隋兴华, 等. 辽东栎林潜在地理分布及其主导因子[J]. 林业科学, 2013, 49(8):10-14. DOI: 10.11707/j.1001-7488.20130802. |
YIN X J, ZHOU G S, SUI X H, et al. Potential geographical distribution of Quercus wutaishanica forest and its dominant factors [J]. Scientia Silvae Sinicae, 2013, 49(8):10-14. | |
[14] | 韩阳阳, 王焱, 项杨, 等. 基于MaxEnt生态位模型的松材线虫在中国的适生区预测分析[J]. 南京林业大学学报(自然科学版), 2015, 39(1):6-10.DOI: 10.3969/j.issn.1000-2006.2015.01.001. |
HAN Y Y, WANG Y, XIANG Y, et al. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on MaxEnt ecological niche model [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(1):6-10. | |
[15] | 王雷宏, 杨俊仙, 徐小牛. 基于MaxEnt分析金钱松适生的生物气候特征[J]. 林业科学, 2015, 51(1):127-131. DOI: 10.11707/j.1001-7488.20150115. |
WANG L H, YANG J X, XU X N. Analysis of suitable bioclimatic characteristics of Pseudolarix amabilis by using MaxEnt model [J]. Scientia Silvae Sinicae, 2015, 51(1):127-131. | |
[16] |
马松梅, 张明理, 张宏祥, 等. 利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J]. 植物生态学报, 2010, 34(11):1327-1335. DOI: 10.3773/j.issn.1005-264x.2010.11.010.
doi: 10.3773/j.issn.1005-264x.2010.11.010 |
MA S M, ZHANG M L, ZHANG H X, et al. Predicting potential geographical distributions and patterns of the relic plant Gymnocarpos przewalskii using Maximum Entropy and genetic algorithm for rule-set prediction [J]. Chinese Journal of Plant Ecology, 2010, 34(11):1327-1335. | |
[17] | 王伟, 田荣荣, 那立妍, 等. 基于MaxEnt生态软件划分澳洲坚果的潜在地理适生区[J]. 林业科学研究, 2017, 30(3):444-449. DOI: 10.13275/j.cnki.lykxyj.2017.03.012. |
WANG W, TIAN R R, NA L Y, et al. Predicting potential geographic suitable regions of Macadamia integrifolia based on MaxEnt [J]. Forest Research, 2017, 30(3):444-449. | |
[18] | DOWLING. Using MaxEnt modeling to predict habitat of mountain pine beetle in response to climate change[D]. Los Angeles: University of Southern California, 2015. |
[19] | 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372. DOI: 10.3321/j.issn:1005-0094.2007.04.005. |
WANG Y S, XIE B Y, WANG F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372.
doi: 10.1360/biodiv.060280 |
|
[20] | 李灿, 刘贤安, 王娟, 等. 基于MaxEnt的四川省红豆杉潜在分布区分析及适宜性评价[J]. 四川林业科技, 2017, 38(5):1-7, 32. DOI: 10.16779/j.cnki.1003-5508.2017.05.001. |
LI C, LIU X A, WANG J, et al. Predictive distribution and habitat suitability assessment of Taxus chinensis based on MaxEnt in Sichuan Province [J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(5):1-7, 32. | |
[21] |
GARCIA K, LASCO R, INES A, et al. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines[J]. Applied Geography, 2013, 44:12-22. DOI: 10.1016/j.apgeog.2013.07.005.
doi: 10.1016/j.apgeog.2013.07.005 |
[22] | 麻亚鸿. 基于最大熵模型(MaxEnt)和地理信息系统(ArcGis)预测藓类植物的地理分布范围——以广西花坪自然保护区为列[D]. 上海: 上海师范大学, 2013. |
MA Y H. Applying MaxEnt and ArcGIS to predict mosses geographic distribution range: a case study of Huaping Nature Reserve, Guangxi[D]. Shanghai: Shanghai Normal University, 2013. | |
[23] | 张东方, 张琴, 郭杰, 等. 基于MaxEnt模型的当归全球生态适宜区和生态特征研究[J]. 生态学报, 2017, 37(15):5111-5120. DOI: 10.5846/stxb201605030837 |
ZHANG D F, ZHANG Q, GUO J, et al. Research on the global ecological suitability and characteristics of regions with Angelica sinensis based on the MaxEnt model [J]. Acta Ecologica Sinica, 2017, 37(15):5111-5120. | |
[24] | 唐继洪, 程云霞, 罗礼智, 等. 基于Maxent模型的不同气候变化情景下我国草地螟越冬区预测[J]. 生态学报, 2017, 37(14):4852-4863. DOI: 10.5846/stxb201604040608. |
TANG J H, CHENG Y X, LUO L Z, et al. MaxEnt-based prediction of overwintering areas of Loxostege sticticalis in China under different climate change scenarios [J]. Acta Ecologica Sinica, 2017, 37(14):4852-4863. | |
[25] | BRADLEY E. The Jackknife, the Bootstrap and other resampling plans[J]. Siam Monograph, 1982, 38(384). DOI: 10.1137/1.9781611970319. |
[26] | 刘清亮, 李垚, 方升佐. 基于MaxEnt模型的青钱柳潜在适宜栽培区预测[J]. 南京林业大学学报(自然科学版), 2017, 41(4):25-29. DOI: 10.3969/j.issn.1000-2006.201608010. |
LIU Q L, LI Y, FANG S Z. MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(4):25-29. | |
[27] |
WILSON C D, ROBERTS D, REID N. Applying species distribution modelling to identify areas of high conservation value for endangered species: a case study using Margaritifera margaritifera (L.)[J]. Biological Conservation, 2011, 144(2):821-829. DOI: 10.1016/j.biocon.2010.11.014.
doi: 10.1016/j.biocon.2010.11.014 |
[28] |
WEBER T C. Maximum entropy modeling of mature hardwood forest distribution in four US states[J]. Forest Ecology and Management, 2011, 261(3):779-788. DOI: 10.1016/j.foreco.2010.12.009.
doi: 10.1016/j.foreco.2010.12.009 |
[29] | 郭樑, 李莲芳, 孙昂, 等. 水分对云南松苗木生长的影响[J]. 种子, 2014, 33(6):64-68. DOI: 10.16590/j.cnki.1001-4705.2014.06.083. |
GUO L, LI L F, SUN A, et al. Effect of the moisture on seedling growth of Pinus yunnanensis [J]. Seed, 2014, 33(6):64-68. | |
[30] | KAESLIN E, REDMOND I, DUDLEY N. Wildlife in a changing climate[R]. Washington DC: Food and Agriculture Organization of the United Nations, 2012. |
[1] | LI Yansong, YANG Yanrong, ZHANG Wenyi, ZHANG Leying, HUANG Ao, ZHANG Yirong. Relationship between characteristics of lightning activity on different underlying surface and forest lightning fire in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 219-228. |
[2] | HE Xu, MIAO Zimei, TIAN Jiaxi, YANG Liu, ZHANG Zengxin, ZHU Bin. Temperature, precipitation and runoff prediction in the Yangtze River basin based on CMIP 6 multi-model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 1-8. |
[3] | YANG Hong, DONG Jingjing, WU Tong, ZHOU Huajin, CHEN Jie, LI Meng, WANG Xianrong, YI Xiangui. Prediction of potential suitable areas of Cerasus discoidea in China based on the MaxEnt model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 131-138. |
[4] | SHI Song, LI Wen, ZHAI Yucen, LIN Xiaopeng, DING Yishu. Spatiotemporal changes of vegetation NDVI and those reasons in northeast China Tiger and Leopard National Park [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 31-41. |
[5] | GAI Junpeng, CHEN Dongsheng, JIA Weiwei, WANG Zheng. Developing height growth model of Larix kaempferi based on genetic and climate effects [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 51-60. |
[6] | HAN Shumin, YAN Wei, YANG Xuedong, HU Bo, YU Fengqiang, GAO Runhong. Potential distribution patterns and future changes of Ulmus pumila in China based on the MaxEnt model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 103-110. |
[7] | HE Xiao, LEI Xiangdong, DUAN Guangshuang, FENG Qingrong, ZHANG Yiru, FENG Linyan. Modelling the effects of climate change on stand biomass growth of larch plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 120-128. |
[8] | ZOU Xiaoming, WANG Guobing, GE Zhiwei, XIE Youchao, RUAN Honghua, WU Xiaoqiao, YANG Yan. Mechanisms and methods for augmenting carbon sink in forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 167-176. |
[9] | WU Fan, ZHU Peihuang, JI Kongshu. Responses of masson pine(Pinus massoniana) distribution patterns to future climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 196-204. |
[10] | TU Zhenyu, GOU Xiaohua, ZOU Songbing. Potential distributions of Picea crassifolia on the north slope of Qilian Mountains [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 221-226. |
[11] | JING Shuo, SUN Huizhen. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 159-166. |
[12] | MIAO Jing, WANG Yong, WANG Lu, XU Xiaogang. Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 193-198. |
[13] | ZHANG Fengying, ZHANG Zengxin, TIAN Jiaxi, HUANG Richao, KONG Rui, ZHU Bin, ZHU Min, WANG Yiming, CHEN Xi. Forest NPP simulation in the Yangtze River Basin and its response to climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 175-181. |
[14] | ZHANG Heng, ZHANG Qiuliang, YUE Yang, SONG Ximing, DAI Haiyan, YI Bole. The impact of climate change on forest and grassland fires and future trends in Hulunbuir City, Inner Mongolia [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 222-230. |
[15] | HUANG Honglan, ZHONG Wogu, YI Deping, CAI Junhuo, ZHANG Lu. Predicting the impact of future climate change on the distribution patterns of Toona ciliata var. pubescens in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 163-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||