JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (6): 97-104.doi: 10.3969/j.issn.1000-2006.201810024
Previous Articles Next Articles
JIA Weiwei(), LIANG Yuzhao, LI Fengri*(
)
Received:
2018-10-15
Revised:
2019-04-21
Online:
2019-11-30
Published:
2019-11-30
Contact:
LI Fengri
E-mail:JIAWW2002@163.com;fengrili@126.com
CLC Number:
JIA Weiwei, LIANG Yuzhao, LI Fengri. Bark thickness prediction models for larch plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 97-104.
Table 1
Statistics of survey factors for various species of larch plantations"
数据 data | 变量 variable | 样本数 sample size | 平均值 mean | 最大值 maximum | 最小值 minimum | 标准差 SD |
---|---|---|---|---|---|---|
建模数据 fitting data | 年龄/a age | 891 | 21.8 | 33.0 | 9.0 | 9.2 |
胸径/cm DBH | 891 | 13.0 | 27.0 | 2.0 | 6.3 | |
HT/m | 891 | 13.1 | 21.5 | 3.8 | 4.9 | |
Dib/cm | 891 | 7.2 | 29.2 | 0.2 | 5.3 | |
Dob/cm | 891 | 8.0 | 31.9 | 0.3 | 5.6 | |
检验数据 variation data | 年龄/a age | 295 | 18.5 | 23.0 | 14.0 | 6.4 |
胸径/cm DBH | 295 | 10.5 | 18.0 | 4.5 | 4.4 | |
HT/m | 295 | 10.9 | 17.2 | 6.6 | 2.9 | |
Dib/cm | 295 | 6.0 | 25.8 | 0.2 | 4.2 | |
Dob/cm | 295 | 6.6 | 28.4 | 0.3 | 4.6 |
Table 2
Results of the fitting of bark thickness base model in larch plantations"
模型 model | 参数估计值 parameter estimate | 拟合统计量 good-of-fit statistics | ||||||
---|---|---|---|---|---|---|---|---|
a0 | a1 | a2 | a3 | a4 | 决定系数 R2 | 均方误差 MSE | 均方根误差 RMSE | |
(1) | 0.554 7 | 0.264 1 | -0.388 23 | 0.003 0 | 0.313 4 | 0.675 8 | 0.001 2 | 0.034 6 |
(2) | 0.110 6 | -0.071 3 | 0.030 69 | 0.073 8 | - | 0.786 1 | 0.010 4 | 0.102 0 |
Table 3
Fitting results of parameters for bark factor and bark thickness model"
随机效应 random effects | 模型 model | 模型形式 model form | 随机参数 random parameter | 参数个数 parameters number | 赤池信息 准则 AIC | 贝叶斯信息 准则 BIC | 对数 似然值 -2LL | 似然 比检验 LRT | P |
---|---|---|---|---|---|---|---|---|---|
树木效应 tree effect | 树皮因子 bark factor | (1) | 无 none | 6 | -3 410.3 | -3 405.6 | -3 412.3 | ||
(1.1) | b2 | 7 | -3 473.5 | -3 470.4 | -3 477.5 | 65.18 | <0.000 1 | ||
(1.2) | b1,b2 | 9 | -3 490.4 | -3 484.2 | -3 498.4 | 20.90 | <0.000 1 | ||
(1.3) | b1,b2,b4 | 12 | -3 503.8 | -3 494.5 | -3 515.8 | 17.40 | 0.001 0 | ||
树皮厚度 bark thickness | (2) | 无 none | 5 | -1 510.3 | -1 505.5 | -1 512.3 | |||
(2.1) | b2 | 6 | -1 722.3 | -1 719.2 | -1 726.3 | 213.98 | <0.000 1 | ||
(2.2) | b1,b2 | 8 | -1 724.9 | -1 718.7 | -1 732.9 | 6.60 | 0.037 0 | ||
(2.3) | b1,b2,b3 | 11 | -1 724.1 | -1 713.2 | -1 738.1 | 5.20 | 0.158 0 | ||
样地效应 plot effect | 树皮因子 bark foctor | (3) | 无 None | 6 | -3 410.3 | -3 405.6 | -3 412.3 | ||
(3.1) | b1 | 7 | -3 437.8 | -3 438.6 | -3 441.8 | 29.45 | <0.000 1 | ||
(3.2) | b1,b2 | 9 | -3 440.7 | -3 442.3 | -3 448.7 | 6.90 | 0.032 0 | ||
树皮厚度 bark thinkness | (4) | 无 None | 5 | -1 510.3 | -1 505.5 | -1 512.3 | |||
(4.1) | b2 | 6 | -1 596.3 | -1 597.0 | -1 600.3 | 87.97 | <0.000 1 | ||
(4.2) | b0,b3 | 8 | -1 598.3 | -1 599.9 | -1 606.3 | 6.00 | 0.050 0 | ||
(4.3) | b0,b2,b3 | 11 | -1 622.3 | -1 625.1 | -1 636.3 | 30.00 | <0.000 1 |
Table 4
Comparison of mixed model simulation results based on random covariance variance-covariance structure"
随机效应 random effect | 模型 model | 方差-协 方差结构 variance- covariance | 参数个数 parameters number | 赤池信息 准则 AIC | 贝叶斯 信息准则 BIC | 对数似 然值 -2LL | 似然比 检验 LRT | P |
---|---|---|---|---|---|---|---|---|
树木效应 tree level | 树皮因子 bark thickness factor | UN | 12 | -3 503.8 | -3 494.5 | -3 515.8 | ||
CS | 8 | -3 462.9 | -3 458.2 | -3 468.9 | 46.9 | <0.000 1 | ||
UN(1) | 7 | -3 473.9 | -3 469.2 | -3 479.9 | 11 | 0.000 9 | ||
树皮厚度 bark thickness | UN | 8 | -1 724.9 | -1 718.7 | -1 732.9 | - | - | |
CS | 7 | -1 723.6 | -1 718.9 | -1 729.6 | 3.3 | 0.069 0 | ||
UN(1) | 7 | -1 722.7 | -1 718.1 | -1 728.7 | 0.9 | - | ||
样地效应 plot level | 树皮因子 bark thickness factor | UN | 9 | -3 440.7 | -3 442.3 | -3 448.7 | - | - |
CS | 8 | -3 442.7 | -3 443.8 | -3 448.7 | 0 | 1.000 0 | ||
UN(1) | 8 | -3 436.3 | -3 437.5 | -3 442.3 | 6.4 | - | ||
树皮厚度 bark thickness | UN | 11 | -1 622.3 | -1 625.1 | -1 636.3 | - | - | |
CS | 7 | -1 596.5 | -1 597.7 | -1 602.5 | 33.8 | <0.000 1 | ||
UN(1) | 8 | -1 609.8 | -1 611.3 | -1 617.8 | 15.3 | <0.000 1 |
Table 5
Estimated values, variance components and fitted statistics for each model"
变量 variable | 参数 parameter | 树皮因子 bark thickness factor | 树皮厚度 bark thickness | ||||
---|---|---|---|---|---|---|---|
基础模型(A) based model | 混合模型(B) (树木) mixed model (tree) | 混合模型(C) (样地) mixed model (plot) | 基础模型(D) based model | 混合模型(E) (树木) mixed model (tree) | 混合模型(F) (样地) mixed model (plot) | ||
固定参数 fixed parameter | β0 | 0.554 7 | 0.399 4 | 0.516 5 | 0.110 6 | -0.028 0 | 0.065 8 |
β1 | 0.264 1 | 0.272 1 | 0.266 8 | -0.071 3 | 0.092 5 | -0.001 4 | |
β2 | -0.388 2 | -0.399 5 | -0.392 5 | 0.030 7 | 0.045 6 | 0.036 7 | |
β3 | 0.003 0 | 0.001 4 | 0.002 4 | 0.073 9 | 0.024 6 | 0.045 8 | |
β4 | 0.313 4 | 0.509 1 | 0.365 0 | - | - | - | |
方差组成 variance component | σ2 | 3.318 2 | 0.001 0 | 0.001 1 | 42.978 4 | 0.007 2 | 0.008 8 |
| - | - | - | 0.016 1 | |||
| 0.010 8 | 0.001 5 | 0.000 7 | - | |||
| 0.014 3 | 0.001 6 | 0.000 1 | 0.000 0 | |||
| - | - | - | 0.020 3 | |||
| 0.000 0 | - | - | - | |||
| - | - | - | - | |||
| - | - | - | -0.000 2 | |||
| - | - | - | -0.018 0 | |||
| - | - | - | - | |||
| -0.012 3 | -0.001 5 | -0.000 1 | - | |||
| - | - | - | - | |||
| -0.001 1 | - | - | - | |||
| - | - | - | 0.000 1 | |||
| 0.001 4 | - | - | - | |||
| - | - | - | - | |||
拟合统计量 fitting parameter | R2 | 0.675 8 | 0.733 5 | 0.695 7 | 0.786 1 | 0.857 5 | 0.820 4 |
σ(MAE) | 0.023 0 | 0.021 6 | 0.022 1 | 0.066 7 | 0.052 8 | 0.061 4 | |
σ(RMSE) | 0.034 6 | 0.031 5 | 0.033 7 | 0.102 0 | 0.082 9 | 0.093 1 |
Table 6
Mixed model test (only fixed effects are considered)"
拟合统计量 fitting parameter | 树皮因子bark thickness factor | 树皮厚度 bark thickness | ||||
---|---|---|---|---|---|---|
基础模型 based model | 混合模型 (树木) mixed model (tree) | 混合模型 (样地) mixed model (plot) | 基础模型 based model | 混合模型 (树木) mixed model (tree) | 混合模型 (样地) mixed model (plot) | |
R2 | 0.598 8 | 0.610 6 | 0.606 8 | 0.716 3 | 0.745 1 | 0.729 1 |
σ(MAE) | 0.025 3 | 0.025 0 | 0.025 0 | 0.071 4 | 0.065 1 | 0.071 4 |
σ(RMSE) | 0.039 4 | 0.038 8 | 0.039 0 | 0.117 3 | 0.111 1 | 0.114 6 |
[1] | HEATH L S, HANSEN M H, SMITH J E, et al. Investigation into calculating tree biomass and carbon in the FIADB using a biomass expansion factor approach[C]// USDA Forest Service Rocky Mountain Research Station, 2009. |
[2] | 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006. |
MENG X Y. Tree survey[M]. Beijing: China Forestry Publishing House, 2006. | |
[3] | GROSENBAUGH L R. STX-Fortran-4 program for estimates of tree populations from 3P sample-tree-measurements[R]. USDA Forest Serv Res Pap Psw, 1967. |
[4] |
LAASASENAHO J, MELKAS T, ALDÉN S. Modelling bark thickness of Picea abies with taper curves[J]. Forest Ecology and Management, 2005, 206(1/2/3):35-47. DOI: 10.1016/j.foreco.2004.10.058
doi: 10.1016/j.foreco.2004.10.058 |
[5] | MAX T, BURKHART H. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976, 22(3):283-289. |
[6] | MALONE T, LIANG J J. A bark thickness model for white spruce in Alaska northern forests[J]. International Journal of Forestry Research, 2009: 1-5. DOI: 10.1155/2009/876965. |
[7] |
KOZAK A, YANG R C. Equations for estimating bark volume and thickness of commercial trees in British Columbia[J]. The Forestry Chronicle, 1981, 57(3):112-115. DOI: 10.5558/tfc57112-3
doi: 10.5558/tfc57112-3 |
[8] |
COURBET F, HOULLIER F. Modelling the profile and internal structureof tree stem. application to Cedrus atlantica (Manetti)[J]. Annals of Forest Science, 2002, 59(1):63-80. DOI: 10.1051/forest:2001006.
doi: 10.1051/forest:2001006 |
[9] |
LI R X, WEISKITTEL A R. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach: comparison of model forms and subsampling strategies[J]. European Journal of Forest Research, 2011, 130(2):219-233. DOI: 10.1007/s10342-010-0423-y.
doi: 10.1007/s10342-010-0423-y |
[10] | 王晓林, 蔡可旺, 姜立春. 落叶松树皮厚度变化规律的研究[J]. 森林工程, 2011, 27(2):8-11. DOI: 10.16270/j.cnki.slgc.2011.02.022. |
WANG X L, CAI K W, JIANG L C. Study on bark thickness of dahurian larch[J]. Forest Engineering, 2011, 27(2):8-11. | |
[11] | 王君山, 闫菁. 树皮厚度和树皮系数变化规律的研究[J]. 河北林果研究, 2011, 26(3):235-237. |
WANG J S, YAN J. Rules of bark thickness and bark coefficient[J]. Hebei Journal of Forestry and Orchard Research, 2011, 26(3):235-237. | |
[12] | 郭孝玉, 孙玉军, 马炜, 等. 适于FVS的长白落叶松树皮因子[J]. 东北林业大学学报, 2011, 39(10):28-31. DOI: 10.13759/j.cnki.dlxb.2011.10.037. |
GUO X Y, SUN Y J, MA W, et al. Bark factor of Larix olgensis suitable for forest vegetation simulator [J]. Journal of Northeast Forestry University, 2011, 39(10):28-31. | |
[13] | FANG Z, BALEY R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive sil-vicultural treatments[J]. Forest Science, 2001, 47:287-300. |
[14] | JIANG L C, DU S L, LI F R. Simulation of Larix gmelinii tree volume growth based on random effect[J]. The Journal of Applied Ecology, 2011, 22(11):2963-2969. |
[15] |
CALEGARIO N, DANIELS R F, MAESTRI R, et al. Modeling dominant height growth based on nonlinear mixed-effects model: a clonal Eucalyptus plantation case study[J]. Forest Ecology and Management, 2005, 204(1):11-21. DOI: 10.1016/j.foreco.2004.07.051
doi: 10.1016/j.foreco.2004.07.051 |
[16] | 姜立春, 刘瑞龙. 基于非线性混合模型的落叶松树干削度模型[J]. 林业科学, 2011, 47(4):101-106. |
JIANG L C, LIU R L. A stem taper model with nonlinear mixed effects for dahurian larch[J]. Scientia Silvae Sinicae, 2011, 47(4):101-106. | |
[17] |
GROOM J D, HANN D W, TEMESGEN H. Evaluation of mixed-effects models for predicting Douglas-fir mortality[J]. Forest Ecology and Management, 2012, 276:139-145. DOI: 10.1016/j.foreco.2012.03.029.
doi: 10.1016/j.foreco.2012.03.029 |
[18] | JIANG L C, ZHANG R, LI F R. Modeling branch length and branch angle with linear mixed effects for dahurian larch[J]. Forestry Science and Technology, 2012, 11(3):57. |
[19] |
HEIN S, MÄKINEN H, YUE C F, et al. Modelling branch characteristics of Norway spruce from wide spacings in Germany[J]. Forest Ecology and Management, 2007, 242(2/3):155-164. DOI: 10.1016/j.foreco.2007.01.014.
doi: 10.1016/j.foreco.2007.01.014 |
[1] | PENG Wenyue, JIA Weiwei, WANG Fan, LI Xin, LI Dandan. Extraction and construction of a QSM-based model of first-order branches of Larix gmelinii plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 185-193. |
[2] | WANG Lichao, CHEN Fengmao, DONG Xiaoyan, TIAN Chenglian, WANG Yang. A study on feeding and oviposition characteristics of Monochamus alternatus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 219-224. |
[3] | DUAN Guangshuang,LI Xuedong, FENG Yan, FU Liyong. Generalized nonlinear mixed-effects crown base height model of Larix principis-rupprechtii natural secondary forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(02): 170-176. |
[4] | MIAO Zheng, DONG Lihu, LI Fengri, BAI Dongxue, WANG Jiahui . Modelling the vertical variation in the number of second order branches of Pinus koraiensis plantation trees through GLMM [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 121-128. |
[5] | CHEN Dongsheng,SUN Xiaomei,LI Fengri. Nonlinear mixed models of branch diameter and length in larch plantation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(06): 74-80. |
[6] | DENG Wenping, LI Fengri. Estimation of self-thinning line for larch plantation based on extreme values [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(05): 11-14. |
[7] | QU Hongjun, MU Changcheng, LI Wanshu. A study on the naturalization and community structure characteristics of Larix gmelinii plantation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2010, 34(04): 153-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||