[1] |
张雄清, 张建国, 段爱国. 基于贝叶斯法估计杉木人工林树高生长模型[J]. 林业科学, 2014, 50(3):69-75.
|
|
ZHANG X Q, ZHANG J G, DUAN A G. Tree-height growth model for Chinese fir plantation based on Bayesian method[J]. Scientia Silvae Sinicae, 2014, 50(3):69-75. DOI: 10.11707/j.1001-7488.20140310.
doi: 10.11707/j.1001-7488.20140310
|
[2] |
卢军, 张会儒, 雷相东, 等. 长白山云冷杉针阔混交林幼树树高——胸径模型[J]. 北京林业大学学报, 2015, 37(11):10-25.
|
|
LU J, ZHANG H R, LEI X D, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains[J]. Journal of Beijing Forestry University, 2015, 37(11):10-25. DOI: 10.13332/j.1000-1522.20140429.
doi: 10.13332/j.1000-1522.20140429
|
[3] |
BOX G E P, TIAO G C. Bayesian inference in statistical analysis[M]. Massachusetts: Wiley Press, 1992:52-65.
|
[4] |
SEBER G A F, WILD C J. Nonlinear regression [M]. Massachusetts: Wiley Press, 1989:188-164.
|
[5] |
WYCKOFF P H, CLARK J S. Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches[J]. Canadian Journal of Forest Research, 2000, 30(1):156-167.
doi: 10.1139/x99-198
|
[6] |
METCALF C J E, MCMAHON S M, CLARK J S. Overcoming data sparseness and parametric constraints in modeling of tree mortality: a new nonparametric Bayesian model[J]. Canadian Journal of Forest Research, 2009, 39(9):1677-1687.DOI: 10.1139/X09-083.
doi: 10.1139/X09-083
|
[7] |
GREEN E J, ROESCH F A. Bayesian estimation for the three-parameter Weibull distribution with tree diameter data[M]. Washington, DC, ETATS-UNIS: International Biometric Society, 1994:110-152.
|
[8] |
BULLOCK B P, BOONE E L. Deriving tree diameter distributions using Bayesian model averaging[J]. Forest Ecology and Management, 2007, 242(2/3):127-132.DOI: j.foreco.2007.01.024.
doi: j.foreco.2007.01.024
|
[9] |
LI R X, STEWART B, WEISKITTEL A. A Bayesian approach for modelling non-linear longitudinal/hierarchical data with random effects in forestry[J]. Forestry, 2012, 85(1):17-25. DOI: 10.1093/forestry/cpr050.
doi: 10.1093/forestry/cpr050
|
[10] |
GREEN E J, STRAWDERMAN W E. A Bayesian growth and yield model for slash pine plantations[J]. Journal of Applied Statistics, 1996, 23(2/3):285-300.DOI: 10.1080/02664769624251.
doi: 10.1080/02664769624251
|
[11] |
NYSTROM K, STAHL G. Forecasting probability distributions of forest yield allowing for a Bayesian approach to management planning[J]. Silva Fennica, 2001, 35(2):185-201.DOI: 10.14214/sf.595.
doi: 10.14214/sf.595
|
[12] |
ZHANG X Q, DUAN A G, ZHANG J G. Estimating Height-diameter models with Bayesian method[J]. The Scientific World Journal 2014(1):1-9.DOI: 10.1155/2014/683691.
doi: 10.1155/2014/683691
|
[13] |
WYCKOFF P H, ClARK J S. Predicting tree mortality from diameter growth: a comparison of maximum likelihood and Bayesian approaches[J]. Canadian Journal of Forest Research, 2000, 30(1):156-167.DOI: 10.1139/x99-198.
doi: 10.1139/x99-198
|
[14] |
姚丹丹, 雷相东, 张则路. 基于贝叶斯法的长白落叶松林分优势高生长模型研究[J]. 北京林业大学学报, 2015, 37(3):94-100.
|
|
YAO D D, LEI X D, ZHANG Z L. Bayesian parameter estimation of dominant height growth model for Changbai larch (Larix olgensis Henry) plantations [J]. Journal of Beijing Forestry University, 2015, 37(3):94-100. DOI: 10.13332/j.1000-1522.20140221.
doi: 10.13332/j.1000-1522.20140221
|
[15] |
ZHANG X Q, CAO Q V, DUAN A G, et al. Modeling tree mortality in relation to climate, initial planting density, and competition in Chinese fir plantations using a Bayesian logistic multilevel method.[J]Canadian Journal of Forest Research, 2017, 47(9):1278-1285.DOI: 10.1139/cjfr-2017-0215.
doi: 10.1139/cjfr-2017-0215
|
[16] |
ZHANG X Q, ZHANG J G, DUAN A G, et al. A hierarchical Bayesian model to predict self-thinning line for Chinese fir in southern China[J]. PLoS ONE, 2015, 10(10):e0139788.DOI: 10.1371/journal.pone.0139788.
doi: 10.1371/journal.pone.0139788
|
[17] |
马武. 蒙古栎林单木生长模型系研究[D]. 北京:中国林业科学研究院, 2012.
|
|
MA W. Individual tree growth model system for Mongolian oak forest[D]. Beijing: Chinese Academy of Forestry, 2012.
|
[18] |
LI R X, STEWART B, WEISKITTEL A. A Bayesian approach for modelling non-linear longitudinal/hierarchical data with random effects in forestry[J]. Forestry, 2012, 85(1):17-25.DOI: 10.1093/forestry/cpr050.
doi: 10.1093/forestry/cpr050
|
[19] |
RUSSELL M B. Influence to prior distributions and random effects on count regression models: implications for estimating standing dead tree abundance[J]. Environment and Ecological Statistics, 2015, 22:145-160.DOI: 10.1007/s10651-014-0290-7.
doi: 10.1007/s10651-014-0290-7
|
[20] |
PATENAUD G, MILNE R. Integrating remote sensing datasets into ecological modelling: a Bayesian approach[J]. International Journal of Remote Sensing, 2008, 29(5):1295-1315.DOI: 10.1080/01431160701736414.
doi: 10.1080/01431160701736414
|
[21] |
FANG S, GERTNER G. Analysis of parameters of two growth models estimated using Bayesian methods and nonlinear regression[R/EB]. http://Cmsi.gre.ac.uk./conferences/iufro (proceedings)( 2004).
|
[22] |
KLEMEDTSSON L, JANSSON P E, et al. Bayesian calibration method used to elucidate carbon turnover in forest on drained organic soil[J]. Biogeochemistry, 2008, 89(1):61-79.DOI: 10.1007/s10533-007-9169-0.
doi: 10.1007/s10533-007-9169-0
|
[23] |
RITCHIE M W, HANN D W. Development of a tree height growth model for Douglas-fir[J]. Forest Ecology and Management, 1986, 15(2):135-145.DOI: 10.1016/0378-1127(86)90142-8.
doi: 10.1016/0378-1127(86)90142-8
|