JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (1): 200-204.doi: 10.3969/j.issn.1000-2006.201902006
Previous Articles Next Articles
ZHANG Qing1,3(), WEI Shuhe2,*(), DAI Huiping1,*(), JIA Genliang3
Received:
2019-02-13
Revised:
2019-08-08
Online:
2020-02-08
Published:
2020-02-02
Contact:
WEI Shuhe,DAI Huiping
E-mail:578809967@qq.com;shuhewei@iae.ac.cn;daihp72@aliyun.com
CLC Number:
ZHANG Qing, WEI Shuhe, DAI Huiping, JIA Genliang. The alleviating effects of selenium on cadmium-induced toxicity in tea leaves[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 200-204.
Table 1
Effects of Se on the contents of chlorophyll a, b and carotenoid of tea leaves under Cd stressmg/g"
处理 treatment | 叶绿素a含量 chlorophyll a content | 叶绿素b含量 chlorophyll b content | 类胡萝卜素含量 carotenoid content |
---|---|---|---|
CK | 1.60±0.05 c | 2.06±0.12 c | 1.37±0.07 c |
T1 | 0.96±0.02 e | 1.01±0.07 e | 0.72±0.03 e |
T2 | 1.76±0.13 b | 2.23±0.16 b | 1.51±0.06 c |
T3 | 1.91±0.21 a | 2.73±0.19 a | 1.92±0.12 a |
T4 | 1.81±0.11 a | 2.43±0.15 b | 1.72±0.10 b |
T5 | 1.16±0.07 d | 1.73±0.11 d | 0.93±0.05 d |
T6 | 1.46±0.09 c | 1.99±0.07 c | 1.23±0.08 c |
T7 | 1.26±0.04 d | 1.83±0.10 c | 1.03±0.04 d |
Table 2
Effects of Se on the activities CAT, APX and GPX of tea leaves uner Cd stress U/mg"
处理 treatment | 过氧化氢 酶活性 CAT activity | 抗坏血栓过 氧化物酶活性 APX activity | 谷胱曲肽过 氧化物酶活性 GPX activity |
---|---|---|---|
CK | 30.6±0.67 b | 11.4±0.89 c | 26.1±1.23 b |
T1 | 10.2±0.51 e | 4.62±0.15 e | 9.36±0.63 f |
T2 | 32.2±1.20 b | 13.8±0.19 b | 27.4±1.33 b |
T3 | 36.4±1.62 a | 18.7±0.13 a | 30.8±0.66 b |
T4 | 35.9±2.17 a | 15.4±0.12 b | 28.3±1.18 a |
T5 | 13.5±1.16 d | 7.72±0.55 d | 12.4±0.82 e |
T6 | 21.0±1.25 c | 9.99±0.61 c | 17.3±0.43 c |
T7 | 16.3±1.01 d | 8.83±0.72 c | 14.7±0.56 d |
Table 3
Effects of Se on the contents of MDA and H2O2 of tea leaves under Cd stress "
处理 treatment | 丙二醛含量 MDA content | 过氧化氢含量 H2O2 content |
---|---|---|
CK | 0.42±0.01 d | 0.66±0.02 d |
T1 | 1.02±0.06 a | 1.26±0.08 a |
T2 | 0.32±0.01 e | 0.46±0.01 e |
T3 | 0.26±0.01 f | 0.36±0.01 f |
T4 | 0.35±0.01 e | 0.53±0.03 e |
T5 | 0.91±0.05 b | 1.01±0.07 b |
T6 | 0.53±0.04 d | 0.72±0.05 d |
T7 | 0.76±0.04 c | 0.88±0.05 c |
Table 4
Effects of Se on the contents of proline, soluble sugar and soluble protein of tea leaves under Cd stressmg/g"
处理 treatment | 脯氨酸含量 proline content | 可溶性糖含量 soluble sugar content | 可溶性蛋白质含量 soluble protein content |
---|---|---|---|
CK | 0.63±0.01 cd | 0.81±0.03 d | 0.71±0.05 c |
T1 | 1.53±0.06 a | 0.65±0.02 e | 0.53±0.01 d |
T2 | 0.55±0.02 d | 0.82±0.04 d | 0.73±0.02 c |
T3 | 0.50±0.01 d | 0.93±0.06 c | 0.83±0.02 b |
T4 | 0.40±0.01 d | 1.06±0.09 b | 0.90±0.04 a |
T5 | 1.03±0.05 b | 0.95±0.05 c | 0.72±0.02 c |
T6 | 0.78±0.03 c | 1.25±0.08 a | 0.93±0.05 a |
T7 | 0.99±0.03 b | 0.88±0.04 cd | 0.76±0.03 c |
Table 5
Effects of Se on the Se and Cd contents and biomass of tea leaves under Cd stress"
处理 treatment | Cd含量/ (mg·kg-1) Cd content | Se含量/ (mg·kg-1) Se content | 叶片生物量/ (g·株-1) leaf biomasse |
---|---|---|---|
CK | 0.56±0.20 e | 0.46±0.19 g | 10.3±0.13 b |
T1 | 6.43±0.09 a | 0.09±0.12 g | 7.80±0.05 d |
T2 | 0.41±0.59 e | 3.33±0.07 c | 10.61±0.08 b |
T3 | 0.21±0.58 e | 4.43±0.67 b | 11.98±0.16 a |
T4 | 0.11±0.53 e | 5.73±0.07 a | 10.4±0.17 b |
T5 | 3.51±0.67 b | 1.43±0.16 f | 8.6±0.04 d |
T6 | 0.99±0.46 d | 1.83±0.09 e | 10.7±0.09 b |
T7 | 2.26±0.70 c | 2.39±0.26 d | 9.7±0.03 c |
[1] |
LU Y F, YANG H M, MA L Y, et al. Application of Pb isotopic tracing technique to constraining the source of Pb in the West Lake Longjing tea[J]. Chinese Journal of Geochemistry, 2011, 30(4):554-562. DOI: 10.1007/s11631-011-0539-x.
doi: 10.1007/s11631-011-0539-x |
[2] | 魏树和, 徐雷, 韩冉, 等. 重金属污染土壤的电动-植物联合修复技术研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(1):154-160. |
WEI S H, XU L, HAN R, et al. Review on combined electrokinetic and phytoremediation technology for soil contaminated by heavy metal[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019, 43(1):154-160. DOI: 10.3969/j.issn.1000-2006.201807011.
doi: 10.3969/j.issn.1000-2006.201807011 |
|
[3] | 李正文, 张艳玲, 潘根兴, 等. 不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J]. 环境科学, 2003, 24(3):112-115. |
LI Z W, ZHANG Y L, PAN G X, et al. Grain contents of Cd, Cu and Se by 57 rice cultivars and the risk significance for human dietary uptake[J]. Chinese Journal of Environmental Science, 2003, 24(3):112-115. DOI: 10.13227/j.hjkx.2003.03.022.
doi: 10.13227/j.hjkx.2003.03.022 |
|
[4] |
LU H P, LIN Z, TAN J F, et al. Contents of fluoride, lead, copper, chromium, arsenic and cadmium in Chinese Pu-erh tea[J]. Food Research International, 2013, 53(2):938-944. DOI: 10.1016/j.foodres.2012.06.014.
doi: 10.1016/j.foodres.2012.06.014 |
[5] |
WU Z C, WANG F H, LIU S, et al. Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environmental and Experimental Botany, 2016, 131:173-180. DOI: 10.1016/j.envexpbot.2016.07.012.
doi: 10.1016/j.envexpbot.2016.07.012 |
[6] |
DING Y, WANG R, GUO J, et al. The effect of selenium on the subcellular distribution of antimony to regulate the toxicity of antimony in paddy rice[J]. Environmental Science and Pollution Research, 2015, 22:5111-5123. DOI: 10.1007/s11356-014-3865-9.
doi: 10.1007/s11356-014-3865-9 |
[7] |
CHENERYE M. A preliminary study of aluminum in the tea bush[J]. Plant and Soil, 1955, 6(2):174-200. DOI: 10.1007/BF01343446.
doi: 10.1007/BF01343446 |
[8] |
DAI H P, JIA G L. Effects of Se on the growth, tolerance, and antioxidative systems of three alfalfa cultivars[J]. Environmental Science and Pollution Research, 2017, 24(28):15196-15201.DOI: 10.1007/s11356-017-9137-8.
doi: 10.1007/s11356-017-9137-8 |
[9] |
WEI S H, TWARDOWSKA I. Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell[J]. Plant and Soil, 2013, 372:669-681.DOI: 10.1007/s11104-013-1783-0.
doi: 10.1007/s11104-013-1783-0 |
[10] |
DAI H P, SHAN C J, ZHAO H, et al. The difference in antioxidant capacity of four alfalfa cultivars in response to Zn[J]. Ecotoxicology and Environmental Safety, 2015, 114:312-317. DOI: 10.1016/j.ecoenv.2014.04.044.
doi: 10.1016/j.ecoenv.2014.04.044 |
[11] |
GOSWAMI S, DAS S. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance[J]. Ecotoxicology and Environmental Safety, 2016, 126:211-218. DOI: 10.1016/j.ecoenv.2015.12.030.
doi: 10.1016/j.ecoenv.2015.12.030 |
[12] |
FILEK M, KOSCIELNIAK J, LABANOWSKA M, et al. Selenium-induced protection of photosynjournal activity in rape (Brassica napus) seedlings subjected to cadmium stress. fluorescence and EPR measurements[J]. Photosynjournal Research, 2010, 105(1):27-37. DOI: 10.1007/s11120-010-9551-y.
doi: 10.1007/s11120-010-9551-y |
[13] |
FENG R W, WEI C Y, TU S X, et al. The roles of selenium in protecting plants against abiotic stresses[J]. Environmental and Experimental Botany, 2013, 87:58-68. DOI: 10.1016/j.envexpbot.2012.09.002.
doi: 10.1016/j.envexpbot.2012.09.002 |
[14] |
LI Y, ZHANG X L, YANG Y Q, et al. Soil cadmium toxicity and nitrogen deposition differently affect growth and physiology in Toxicodendron vernicifluum seedlings[J]. Acta Physiologiae Plantarum, 2013, 35(2) :529-540. DOI: 10.1007/s11738-012-1094-8.
doi: 10.1007/s11738-012-1094-8 |
[15] |
LIN L, ZHOU W H, DAI H X, et al. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Journal of Hazardous Materials, 2012,235-236;343-351.DOI: 10.1016/j.jhazmat.2012.08.012.
doi: 10.1016/j.jhazmat.2012.08.012 |
[16] |
FILEK M, KESKINEN R, HARTIKAINEN H, et al. The protective role of selenium in rape seedlings subjected to cadmium stress[J]. Journal of Plant Physiology, 2008, 165(8):833-844. DOI: 10.1016/j.jplph.2007.06.006.
doi: 10.1016/j.jplph.2007.06.006 |
[17] |
QING X J, ZHAO X H, HU C X, et al. Selenium alleviates chromium toxicity by preventing oxidative stress in cabbage (Brassica campestris L.ssp.pekinensis) leaves[J]. Ecotoxicology and Environmental Safety, 2015, 114:179-189. DOI: 10.1016/j.ecoenv.2015.01.026.
doi: 10.1016/j.ecoenv.2015.01.026 |
[18] |
HE J Y, REN Y F, ZHU C, et al. Effect of Cd on growth, photosynthetic gas exchange and chlorophyll fluorescence of wild and Cd-sensitive mutant rice[J]. Photosynthetica, 2008, 46(3):466-470. DOI: 10.1007/s11099-008-0080-2.
doi: 10.1007/s11099-008-0080-2 |
[19] |
CHAO Y, HONG C, KAO C. The decline in ascorbic acid content is associated with cadmium toxicity of rice seedings[J]. Plant Physiology and Biochemistry, 2010, 48:374-381.DOI: 10.1016/j.plaphy.2010.01.009.
doi: 10.1016/j.plaphy.2010.01.009 |
[20] | 孙红艳, 李文斌, 王小云, 等. 硒对大麦镉毒害的缓解效应研究[J]. 广东农业科学, 2014, 16:9-13. |
SUN H Y, LI W B, WANG X Y. et al. Mitigative effect of selenium on the cadmium toxicity in barley[J]. Guangdong Agricultural Sciences, 2014, 16:9-13. DOI: 10.3969/j.issn.1004-874X.2014.16.003.
doi: 10.3969/j.issn.1004-874X.2014.16.003 |
|
[21] | 郭锋, 樊文华. 外源硒对镉胁迫下芥菜种子萌发生理效应的影响[J]. 华北农学报, 2013, 28(4) :130-133. |
GUO F, FAN W H. Effects of exogenous selenium on physiological effects of germination of mustard seeds under Cd stress[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(4) :130-133. DOI: 10.3969/j.issn.1000-7091.2013.04.024.
doi: 10.3969/j.issn.1000-7091.2013.04.024 |
[1] | ZHOU Yunfei, DU Qingxin, WANG Zhiyong, WANG Lu, WANG Yan, LIU Panfeng, SUN Zhiqiang. Steam explosion impact on the active ingredients, antioxidant activity and aroma components of the aqueous extract from Eucommia ulmoides leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 245-256. |
[2] | DING Yong, LIU Xin, ZHANG Jinchi, WANG Yuhao, CHEN Meiling, LI Tao, LIU Xiaowu, ZHOU Yuexiang, SUN Lianhao, LIAO Yi. Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 90-98. |
[3] | SUN Jinwei, WANG Shengyan, FAN Diwu, ZHU Yongli. Effects of C, N and P additions on soil respiration in woodland under Cd stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 140-146. |
[4] | ZHOU Youfeng, XIE Binglou, LI Mingshi. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 169-178. |
[5] | DONG Yujie, MAO Lingfeng, ZHANG Min, LU Xudong, WU Xiuping. Relationship between aboveground biomass and environmental factors of subtropical typical evergreen broad-leaved forest in east China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 74-80. |
[6] | LI Jianxin, XU Sen, YANG Liting, CHEN Shuanglin, GUO Ziwu. Interannual effects of growth, module biomass accumulation and allocation of Polygonatum cyrtonema under Phyllostachys edulis forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 121-128. |
[7] | GUO Wei, HAN Xiu, ZHANG Li, WANG Ying, DU Hui, YAN Yu, SUN Zhongkui, ZHANG Lin, LI Guohua, LUO Lei. Morphological, photosynthetic physiological and transcriptome analyses of Pteroceltis tatarinowii in response to different nitrogen application levels [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 87-96. |
[8] | HE Xiao, LEI Xiangdong, DUAN Guangshuang, FENG Qingrong, ZHANG Yiru, FENG Linyan. Modelling the effects of climate change on stand biomass growth of larch plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 120-128. |
[9] | SUN Yu, LI Fengri, XIE Longfei, DONG Lihu. Construction of the stand-level biomass model of Larix olgensis plantations based on stand and topographic factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 129-136. |
[10] | XU Hui, YAO Xiazhen, TONG Keke, XING Zhen, LI Yao. Analysis of volatile components in different parts of flower organs of three species of tree peony [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 63-69. |
[11] | TANG Yiren, JIA Weiwei, WANG Fan, SUN Yuman, ZHANG Ying. Constructing a biomass model of Larix olgensis primary branches based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 130-140. |
[12] | WANG Jianchao, QIU Wenmin, JIN Kangming, LU Zhuchou, HAN Xiaojiao, ZHUO Renying, LIU Xiaoguang, HE Zhengquan. Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 49-60. |
[13] | GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui. Application of structural equation model in growth of Larix gmelinii stand [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 38-46. |
[14] | YAO Nan, LIU Guangquan, YAO Shunbo, JIA Lei, LIN Ying, DENG Yuanjie, HOU Mengyang. Analysis of carbon sequestration effect of sloping land conversion program in Loess Plateau from the perspective of slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 180-188. |
[15] | YE Daiquan. Performances and selections on a 12-year-old full-sib progeny testing from one of the candidate population for the 4th generation Chinese fir breeding [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 240-250. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||