JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (5): 109-116.doi: 10.3969/j.issn.1000-2006.201904022
Previous Articles Next Articles
LIANG Weiwei(), CHEN Lixin*(), DUAN Wenbiao, LI Yifei, LI Shaoran, YU Yingying
Received:
2019-04-11
Revised:
2020-04-08
Online:
2020-10-30
Published:
2020-10-30
Contact:
CHEN Lixin
E-mail:L182158798@163.com;lxchen88@163.com
CLC Number:
LIANG Weiwei, CHEN Lixin, DUAN Wenbiao, LI Yifei, LI Shaoran, YU Yingying. Effects of gap size and litter decomposition on soil vanillic acid content in Tilia amurensis-Pinus koraiensis forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 109-116.
Table 1
Basic characteristic of experimental plots of various gaps"
样地 plot | 面积/m2 area | 坡度/(°) slope | 坡向 aspect | 林隙形成木 gap-maker | 边缘木主要树种 main edge tree species | 平均树高/ m mean tree height | 平均 胸径/cm mean DBH |
---|---|---|---|---|---|---|---|
大林隙 | 1 030.84 | 5 | 西南 | 红松、椴树 | 红松、椴树、花楷槭 | 25.9 | 62.3 |
中林隙 | 812.79 | 6 | 东南 | 红松、椴树 | 红松、椴树、花楷槭 | 26.7 | 57.6 |
小林隙 | 228.74 | 4 | 东南 | 红松、椴树、裂叶榆 | 红松、椴树、裂叶榆、五角槭 | 29.6 | 58.3 |
Fig.1
The effect of gap size of Tilia amurensis- Pinus koraiensis forest and Tilia amurensis litter decomposition duration on vanillic acid content in soil Different lowercase letters of the same time represent significant difference(P<0.05) among different gap sizes, different capital letters of the same gap represent significant difference(P<0.05) among different litter decompo sition duration. The same below."
Table 2
Multivariate analysis result of gap size of Tilia amurensis-Pinus koraiensis forest, litter decomposition duration"
方差来源 source of variance | 离差平方和 sum of deviation squares | 方差 variance | F | P |
---|---|---|---|---|
ⅰ | 92.37 | 309.25 | 4 444.60 | <0.01 |
ⅱ | 2 689.14 | 672.28 | 9 662.26 | <0.01 |
ⅲ | 92.37 | 46.19 | 663.79 | <0.01 |
ⅰ×ⅱ | 762.99 | 38.15 | 548.29 | <0.01 |
ⅰ×ⅲ | 695.55 | 69.56 | 999.67 | <0.01 |
ⅱ×ⅲ | 261.40 | 32.68 | 469.62 | <0.01 |
ⅰ×ⅱ×ⅲ | 1 360.05 | 34.00 | 488.68 | <0.01 |
Table 3
The interaction Post Hoc checklist of multivariate analysis"
源source | F | P | 源source | F | P |
---|---|---|---|---|---|
i WITHIN ⅲ(T) WITHIN ii(61) | 1 342.49 | <0.01 | ii WITHIN ⅲ(B) WITHIN ⅰ(So) | 1 973.28 | <0.01 |
i WITHIN ⅲ(T) WITHIN ii(123) | 788.73 | <0.01 | iii WITHIN ⅰ(L) WITHIN ii(61) | 4.72 | <0.01 |
i WITHIN ⅲ(T) WITHIN ii(147) | 578.12 | <0.01 | iii WITHIN ⅰ(L) WITHIN ii(123) | 4.79 | <0.01 |
i WITHIN ⅲ(T) WITHIN ii(458) | 34.50 | <0.01 | iii WITHIN ⅰ(L) WITHIN ii(147) | 1 071.08 | <0.01 |
i WITHIN ⅲ(T) WITHIN ii(519) | 2 126.44 | <0.01 | iii WITHIN ⅰ(L) WITHIN ii(458) | 457.99 | <0.01 |
i WITHIN ⅲ(P) WITHIN ii(61) | 510.70 | <0.01 | iii WITHIN ⅰ(L) WITHIN ii(519) | 209.68 | <0.01 |
i WITHIN ⅲ(P) WITHIN ii(123) | 229.10 | <0.01 | iii WITHIN ⅰ(Lo) WITHIN ii(61) | 746.19 | <0.01 |
i WITHIN ⅲ(P) WITHIN ii(147) | 865.58 | <0.01 | iii WITHIN ⅰ(Lo) WITHIN ii(123) | 4.43 | <0.05 |
i WITHIN ⅲ(P) WITHIN ii(458) | 578.37 | <0.01 | iii WITHIN ⅰ(Lo) WITHIN ii(147) | 265.94 | <0.01 |
i WITHIN ⅲ(P) WITHIN ii(519) | 151.30 | <0.01 | iii WITHIN ⅰ(Lo) WITHIN ii(458) | 807.65 | <0.01 |
i WITHIN ⅲ(B) WITHIN ii(61) | 1 423.92 | <0.01 | iii WITHIN ⅰ(Lo) WITHIN ii(519) | 80.96 | <0.01 |
i WITHIN ⅲ(B) WITHIN ii(123) | 629.26 | <0.01 | iii WITHIN ⅰ(M) WITHIN ii(61) | 833.21 | <0.01 |
i WITHIN ⅲ(B) WITHIN ii(147) | 1 151.14 | <0.01 | iii WITHIN ⅰ(M) WITHIN ii(123) | 926.57 | <0.01 |
i WITHIN ⅲ(B) WITHIN ii(458) | 2 098.50 | <0.01 | iii WITHIN ⅰ(M) WITHIN ii(147) | 386.06 | <0.01 |
i WITHIN ⅲ(B) WITHIN ii(519) | 38.37 | <0.01 | iii WITHIN ⅰ(M) WITHIN ii(458) | 2 397.94 | <0.01 |
ii WITHIN ⅲ(T) WITHIN ⅰ(L) | 400.95 | <0.01 | iii WITHIN ⅰ(M) WITHIN ii(519) | 144.22 | <0.01 |
ii WITHIN ⅲ(T) WITHIN ⅰ(Lo) | 425.07 | <0.01 | iii WITHIN ⅰ(Mo) WITHIN ii(61) | 71.01 | <0.01 |
ii WITHIN ⅲ(T) WITHIN ⅰ(M) | 1 052.41 | <0.01 | iii WITHIN ⅰ(Mo) WITHIN ii(123) | 623.74 | <0.01 |
源source | F | P | 源source | F | P |
ii WITHIN ⅲ(T) WITHIN ⅰ(Mo) | 859.66 | <0.01 | iii WITHIN ⅰ(Mo) WITHIN ii(147) | 228.14 | <0.01 |
ii WITHIN ⅲ(T) WITHIN ⅰ(S) | 767.19 | <0.01 | iii WITHIN ⅰ(Mo) WITHIN ii(458) | 47.27 | <0.01 |
ii WITHIN ⅲ(T) WITHIN ⅰ(So) | 1 340.77 | <0.01 | iii WITHIN ⅰ(Mo) WITHIN ii(519) | 8.25 | <0.01 |
ii WITHIN ⅲ(P) WITHIN ⅰ(L) | 819.91 | <0.01 | iii WITHIN ⅰ(S) WITHIN ii(61) | 770.97 | <0.01 |
ii WITHIN ⅲ(P) WITHIN ⅰ(Lo) | 1 018.97 | <0.01 | iii WITHIN ⅰ(S) WITHIN ii(123) | 205.08 | <0.01 |
ii WITHIN ⅲ(P) WITHIN ⅰ(M) | 219.00 | <0.01 | iii WITHIN ⅰ(S) WITHIN ii(147) | 667.92 | <0.01 |
ii WITHIN ⅲ(P) WITHIN ⅰ(Mo) | 630.99 | <0.01 | iii WITHIN ⅰ(S) WITHIN ii(458) | 523.14 | <0.01 |
ii WITHIN ⅲ(P) WITHIN ⅰ(S) | 1 278.86 | <0.01 | iii WITHIN ⅰ(S) WITHIN ii(519) | 2.06 | >0.05 |
ii WITHIN ⅲ(P) WITHIN ⅰ(So) | 2 732.10 | <0.01 | iii WITHIN ⅰ(So) WITHIN ii(61) | 41.81 | <0.01 |
ii WITHIN ⅲ(B) WITHIN ⅰ(L) | 685.77 | <0.01 | iii WITHIN ⅰ(So) WITHIN ii(123) | 427.20 | <0.01 |
ii WITHIN ⅲ(B) WITHIN ⅰ(Lo) | 614.74 | <0.01 | iii WITHIN ⅰ(So) WITHIN ii(147) | 78.13 | <0.01 |
ii WITHIN ⅲ(B) WITHIN ⅰ(M) | 2 020.16 | <0.01 | iii WITHIN ⅰ(So) WITHIN ii(458) | 290.98 | <0.01 |
ii WITHIN ⅲ(B) WITHIN ⅰ(Mo) | 486.64 | <0.01 | iii WITHIN ⅰ(So) WITHIN ii(519) | 4 987.01 | <0.01 |
ii WITHIN ⅲ(B) WITHIN ⅰ(S) | 903.27 | <0.01 |
[1] |
YIRDAW E, LUUKKANEN O . Photosynthetically active radiation transmittance of forest plantation canopies in the Ethiopian highlands[J]. Forest Ecology and Management, 2004,188:17-24. DOI: 10.1016/j.foreco.2003.07.024.
doi: 10.1016/j.foreco.2003.07.024 |
[2] |
YANG Y G, GENG Y Q, ZHOU H J , et al. Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest[J]. Pedobiologia, 2017,61:51-60. DOI: 10.1016/j.pedobi.2017.03.001.
doi: 10.1016/j.pedobi.2017.03.001 |
[3] | ZHANG T, YAN Q L, WANG J , et al. Restoring temperate secondary forests by promoting sprout regeneration: effects of gap size and within-gap position on the photosynjournal and growth of stump sprouts with contrasting shade tolerance[J]. Forest Ecology and Management, 2018,429:267-277. DOI: 10.1016/j.foreco.2018.07.025. |
[4] | 魏全帅, 王敬华, 段文标 , 等. 红松阔叶混交林不同大小林隙内丘坑复合体微气候动态变化[J]. 应用生态学报, 2014,25(3):702-710. |
WEI Q S, WANG J H, DUAN W B , et al. Microclimate dynamics of pit and mound complex within different sizes of forest gaps in Pinus koraiensis-dominated broadleaved mixed forest[J]. Chin J Appl Ecol, 2014,25(3):702-710. DOI: 10.13287/j.1001-9332.2013.0020. | |
[5] |
UHL C, CLARK K, DEZZEO N , et al. Vegetation dynamics in Amazonian treefall gaps[J]. Ecology, 1988,69(3):751-763. DOI: 10.2307/1941024.
doi: 10.2307/1941024 |
[6] | 宋蕾, 林尤伟, 金光泽 . 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响[J]. 南京林业大学学报(自然科学版), 2017,41(5):7-12. |
SONG L, LIN Y W, JIN G Z . Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in a mixed broadleaf Korean pine forest[J]. J Nanjing For Uni(Nat Sci Ed), 2017,41(5):7-12. DOI: 10.3969/j.issn.1000-2006.201607039. | |
[7] | 韩玉娜, 张瑜, 金光泽 . 腐烂等级、径级对阔叶红松林木质残体含水率和密度的影响[J]. 南京林业大学学报(自然科学版), 2020,44(2):133-140. |
HAN Y N, ZHANG Y, JIN G Z . Effects of decay class and diameter class on moisture content and wood density in a typical mixed broadleaf-Korean pine forest[J]. J Nanjing For Uni(Nat Sci Ed), 2020,44(2):133-140. DOI: 10.3969/j.issn.1000-2006.201812016. | |
[8] | 王琴香, 沈海龙, 和春庭 , 等. 红松人工林和相邻次生林林下红松天然更新种群格局分析[J]. 森林工程, 2018,34(2):16-20. |
WANG Q X, SHEN H L, HE C T , et al. Analysis of natural regeneration pattern of Pinus koraiensis seedlings regenerated in Pinus koraiensis plantation and its adjacent Quercus mongolica natural forest[J]. For Eng, 2018,34(2):16-20. DOI: 10.16270/j.cnki.slgc.2018.02.016. | |
[9] | 梁晓兰, 潘开文, 王进闯 . 花椒(Zanthoxylum bungeanum)凋落物分解过程中酚酸的释放及其浸提液对土壤化学性质的影响[J]. 生态学报, 2008,28(10):4676-4684. |
LIANG X L, PAN K W, WANG J C . Releasing dynamics of phenolic acid during Zanthoxylum bungeanum litter decomposition and effects of its aqueous extract on soil chemical properties[J]. Acta Ecol Sini, 2008,28(10):4676-4684. DOI: 10.3321/j.issn:1000-0933.2008.10.007. | |
[10] | 田给林, 毕艳孟, 孙振钧 , 等. 酚酸类物质在作物连作障碍中的化感效应及其调控研究进展[J]. 中国科技论文, 2016,11(6):699-705. |
TIAN G L, BI M Y, SUN Z J , et al. Progress in allelopathic effect and regulation of phenolic acids for continuous cropping obstacle system[J]. China Sci, 2016,11(6):699-705. DOI: 10.3969/J.ISSN.2095-2783.2016.06.022. | |
[11] | 徐志霞, 张雅倩, 陶月 , 等. 不同分解程度木麻黄凋落物的养分特征及微生物功能多样性分析[J]. 南京林业大学学报(自然科学版), 2020,44(2):197-205. |
XU Z X, ZHANG Y Q, TAO Y , et al. Nutrient composition of litters and functional diversity of different microorganisms in various decomposition stages of Casuarina equisetifolia plantations[J]. J Nanjing For Uni(Nat Sci Ed), 2020,44(2):197-205. DOI: 10.3969/j.issn.1000-2006.201901021. | |
[12] | 李子文 . 林隙对小兴安岭阔叶红松林凋落物分解及养分释放的影响[D]. 哈尔滨:东北林业大学, 2014. |
LI Z W . Influence of gap on litter decomposition and nutrient dynamics in typical mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains[D]. Harbin: Northeast Forestry University, 2014. | |
[13] |
谢星光, 陈晏, 卜元卿 , 等. 酚酸类物质的化感作用研究进展[J]. 生态学报, 2014,34(22):6417-6428.
doi: 10.5846/stxb201302210285 |
XIE X G, CHEN Y, BU Y Q , et al. A review of allelopathic researches on phenolic acids[J]. Acta Ecol Sin, 2014,34(22):6417-6428. DOI: 10.5846/STXB201302210285. | |
[14] |
RIDENOUR W M, CALLAWAY R M . The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass[J]. Oecologia, 2001,126(3):444-450. DOI: 10.1007/s004420000533.
doi: 10.1007/s004420000533 pmid: 28547460 |
[15] | 孙小霞, 王海斌, 何海斌 , 等. 田间旱育条件下不同化感潜力水稻根际土壤酚酸类和萜类物质分析[J]. 中国生态农业学报, 2014,22(7):806-812. |
SUN X X, WANG H B, HE H B , et al. Analysis of phenolic acids and terpenoids in rhizosphere soils of different allelopathic rice varieties under dry field conditions[J]. Chin J Eco-Agric, 2014,22(7):806-812. DOI: 10.3724/SP.J.1011.2014.40071. | |
[16] | 黄玉茜, 杨劲峰, 梁春浩 , 等. 香草酸对花生种子萌发、幼苗生长及根际微生物区系的影响[J]. 中国农业科学, 2018,51(9):1735-1745. |
HUANG Y Q, YANG J F, LIANG C H , et al. Effects of vanillic acid on seed germination, seedling growth and rhizosphere microflora of peanut[J]. Sci Agric Sin, 2018,51(9):1735-1745. DOI: 10.3864/j.issn.0578-1752.2018.09.011. | |
[17] | TANG C S, CAI W F, KOHL K , et al. ACS Symposium Series. Plant stress and allelopathy[M]. Washington D C: American Chemical Society, 1994: 142-157. DOI: 10.1021/bk-1995-0582.ch011. |
[18] |
EINHELLIG F A . Interactions involving allelopathy in cropping systems[J]. Agronomy Journal, 1996,88(6):886-893. DOI: 10.2134/agronj1996.00021962003600060007x.
doi: 10.2134/agronj1996.00021962003600060007x |
[19] | 孔垂华, 胡飞, 骆世明 . 胜红蓟(Ageratum conyzoides L.)对作物的化感作用[J]. 中国农业科学, 1997,30(5):95. |
KONG C H, HU F, LUO S M . Alelopathy of Ageratum conyzoides L. on crops[J]. Scientia Agricultura Sinica, 1997,30(5):95. | |
[20] | 王大力 . 全球CO2浓度变化与植物的化感作用[J]. 生态学报, 1999,19(1):122-127. |
WANG D L . CO2 enrichment and allelopathy[J]. Acta Ecol Sin, 1999,19(1):122-127. DOI: 10.3321/j.issn:1000-0933.1999.01.020. | |
[21] |
JABRAN K, MAHAJAN G, SARDANA V , et al. Allelopathy for weed control in agricultural systems[J]. Crop Protection, 2015,72:57-65. DOI: 10.1016/j.cropro.2015.03.004.
doi: 10.1016/j.cropro.2015.03.004 |
[22] |
MAKINO T, TAKAHASHI Y, SAKURAI Y , et al. Influence of soil chemical properties on adsorption and oxidation of phenolic acids in soil suspension[J]. Soil Science and Plant Nutrition, 1996,42(4):867-879. DOI: 10.1080/00380768.1996.10416634.
doi: 10.1080/00380768.1996.10416634 |
[23] | 段文标, 龚建美, 周美珩 , 等. 不同林型天然红松混交林林隙大小和枯叶分解对土壤微生物碳的影响[J]. 林业科学研究, 2017,30(2):268-275. |
DUAN W B, GONG J M, ZHOU M H , et al. Effects of gap size and dead leaf decomposition on soil microbial biomass carbon in different stand types of natural Pinus koraiensis mixed forest[J]. For Res, 2017,30(2):268-275. DOI: 10.13275/j.cnki.lykxyj.2017.02.012. | |
[24] | 刘少冲, 段文标, 钟春艳 , 等. 阔叶红松林不同大小林隙土壤温度、水分、养分及微生物动态变化[J]. 水土保持学报, 2012,26(5):78-83, 89. |
LIU S C, DUAN W B, ZHONG C Y , et al. Dynamic changes in soil temperature, water content, nutrition and microorganisms of different size gaps in the mixed broad leaved Korean pine forest[J]. J Soil Water Conserv, 2012,26(5):78-83, 89. DOI: 10.13870/j.cnki.stbcxb.2012.05.035. | |
[25] | 段罕慧, 张琼, 刘景春 , 等. 秋茄凋落叶酚酸动态变化及其对新月菱形藻的化感效应[J]. 厦门大学学报(自然科学版), 2014,53(6):860-866. |
DUAN H H, ZHANG Q, LIU J C , et al. Dynamics of phenolic acids extracted from Kandelia obovata (S.L.) young leaf litters and their allelopathic effects on Nitzschia closterium[J]. Journal of Xiamen University(Natural Science), 2014,53(6):860-866. DOI: 10.6043/j.issn.0438-0479.2014.06.021. | |
[26] |
BLUM U, SHAFER S R, LEHMAN M E . Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils:concepts vs. an experimental model[J]. Critical Reviews in Plant Science, 1999,18(5):673-693. DOI: 10.1080/07352689991309441.
doi: 10.1080/07352689991309441 |
[27] |
AN M, PRATLEY J E, HAIG T . Phytotoxicity of Vulpia residues:Ⅳ. Dynamics of allelochemicals during decomposition of Vulpia residues and their corresponding phytotoxicity[J]. Journal of Chemical Ecology, 2000,26(11):2603-2617. DOI: 10.1023/a:1005545014843.
doi: 10.1023/A:1005545014843 |
[28] |
BERG B, MÜLLER M, WESSÉN B . Decomposition of red clover (Trifolium pratense) roots[J]. Soil Biology Biochem, 1987,19(5):589-593. DOI: 10.1016/0038-0717(87)90103-9.
doi: 10.1016/0038-0717(87)90103-9 |
[29] | 李志华, 沈益新, 刘信宝 , 等. 几个紫花苜蓿品种在南京地区的生产性能和品质表现[J]. 中国草地学报, 2006,28(1):36-40. |
LI Z H, SHEN Y X, LIU X B , et al. Performance of forage productivity and quality of several alfalfa varieties in Nanjing[J]. China J Grassland, 2006,28(1):36-40. DOI: 10.3969/j.issn.1673-5021.2006.01.008. |
[1] | ZHANG Ruyi,HU Hongling, LYU Xiangyang,CHEN Hong, YANG Shanshan, HU Tingxing. Effects of decomposingleaf litter of Cinnamomum camphora on the resistance physiology of three intercropping crops and activity of the organic nitrogen fraction [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(03): 29-36. |
[2] | CUI Hongxia, PAN Lei, HUANG Zhilin, ZENG Lixiong, WANG Xiaorong, PANG Hongdong. Characteristics of litter production dynamic and decomposition process of Abies fargesii forest in Shennongjia, Hubei Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(01): 194-198. |
[3] | ZENG Qunying,LI Jiping,HUANG Jianjian, LIU Suqing,HAN Weidong,ZHOU Yuanman. Forest gap character of degradation mangrove in Techeng Island [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(06): 170-174. |
[4] | FAN Huan, WANG Shaojun, RUAN Honghua,TAN Yan, ZHENG Abao, XU Yu, XU Kai, CAO Guohua. Effects of soil fauna on litter decomposition and its community structure under different land use patterns in coastal region of northern Jiangsu province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(03): 1-7. |
[5] | XU Hanmei, RUAN Honghua. Effect of the snow storm on the leaf litter decomposition and its nutrients releasing of Phyllostachys edulis ecosystem in the Wuyi Mountains [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(06): 69-72. |
[6] | FU Liyong1, HE Zheng2,LIU Ying′an3*. Model based on modified Elman neural network for forecasting forest gap size [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(03): 5-. |
[7] | HAN Yong, XU Xiangen, RUAN Honghua* , WANG Shaojun, WANG Jiashe, XU Zikun. Leaf litter (Pinus tanwanensi) decomposition in four plant communities at different altitude in Wuyi Mountain [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2010, 34(03): 141-145. |
[8] | ZHANG Jing, WANG Shao-jun, RUAN Hong-hua*. Effects of soil fauna on plant litter decomposition in forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2008, 32(05): 140-144. |
[9] | WANG Jin xin, ZHANG Yi ping,LIU Yu hong,MA You xin,LI You rong. The Leaf Temperature Characteristics of Colonists of the Secondary Forest Gap in the Rain Season in Xishuangbanna [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2002, 26(01): 78-82. |
[10] | WANG Jin xin, ZHANG Yi ping. A Review on Within-gap Micro-environmental Heterogeneity and Species′ Response [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2002, 26(01): 69-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||