JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (6): 175-183.doi: 10.3969/j.issn.1000-2006.202002025
Previous Articles Next Articles
JU Ye1,2(), JIANG Jianping3, YIN Zengfang1,2, WEI Qiang1,*(
)
Received:
2020-02-15
Revised:
2020-03-22
Online:
2020-11-30
Published:
2020-12-07
Contact:
WEI Qiang
E-mail:296817241@qq.com;weiqiang@njfu.edu.cn
CLC Number:
JU Ye, JIANG Jianping, YIN Zengfang, WEI Qiang. Full-length transcriptome sequencing and annotation analyses of Bambusa multiplex sheath[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 175-183.
Fig.1
The length distribution of full-length transcripts of Bambusa multiplex sheath A. The sheaths of Bambusa multiplex used for transcriptome sequencing. 2S to 7S represents the second internode sheath to the seventh internode sheath (from bottom to top) of the bamboo shoot with a height of 2.3 m. B. Length distribution of the sheath transcript of Bambusa multiplex."
Table 1
Transcripts involved in the photosynthesis of bamboo sheath"
光合作用过程 photosynthesis part | MapMan类别 MapMan Bin | 转录本数目 transcript number | 光合作用过程 photosynthesis part | MapMan类别 MapMan Bin | 转录本数目 transcript number |
---|---|---|---|---|---|
卡尔文循环 calvin cycle | 醛缩酶aldolase | 11 | 光反应 light reaction | 转酮醇酶transketolase | 3 |
ATP合成酶ATPsynthase | 12 | ||||
D-果糖1,6-二磷酸酯酶 D-fructose-1,6-bisphosphate 1-phosphohydrolase | 2 | ||||
循环电子流-叶绿体呼吸 cyclic electron flow-chlororespiration | 26 | ||||
细胞色素b6/f cytochrome b6/f | 4 | ||||
甘油醛-3-磷酸脱氢酶 glyceraldehyde-3-phosphate dehydrogenase | 1 | ||||
NADH脱氢酶NADH DH | 12 | ||||
铁氧化还原蛋白ferredoxin | 25 | ||||
质体醌plastocyanin | 1 | ||||
光系统Ⅰ. LHC-Ⅰ photosystemI. LHC-Ⅰ | 12 | ||||
磷酸甘油酸激酶 phosphoglycerate kinase | 10 | ||||
光系统Ⅰ多肽亚基 photosystem Ⅰ. PSI polypeptide subunits | 28 | ||||
磷酸戊糖激酶 phosphopentokinase | 4 | ||||
光系统Ⅱ.生物发生 photosystem Ⅱ. Biogenesis | 1 | ||||
核糖-5-磷酸异构酶 ribose 5-phosphate isomerase | 1 | ||||
光系统Ⅱ. LHC-Ⅱ photosystem Ⅱ. LHC-Ⅱ | 20 | ||||
核酮糖磷酸3-表异构酶 ribulose-phosphate 3-epimerase | 7 | ||||
光系统Ⅱ多肽亚基 photosystem Ⅱ. PSII polypeptide subunits | 42 | ||||
状态转换state transition | 24 | ||||
rubisco互作相关 rubisco interacting | 30 | ||||
光呼吸 photorespiration | 过氧化物酶体转氨酶 aminotransferases peroxisomal | 7 | |||
rubisco大亚基 rubisco large subunit | 6 | ||||
甘油酸激酶glycerate kinase | 9 | ||||
甘油酸清除. H蛋白 glycine cleavage. H protein | 12 | ||||
rubisco小亚基 rubisco small subunit | 4 | ||||
乙醇酸氧化酶glycolateoxidase | 31 | ||||
羟基丙酮酸还原酶 hydroxy pyruvate reductase | 17 | ||||
景天庚酮糖二磷酸酶 sedoheptulose bisphosphatase | 2 | ||||
磷酸甘油磷酸酯酶 phosphoglycolate phosphatase | 5 | ||||
磷酸丙糖异构酶 triosephosphate isomerase | 11 | ||||
丝氨酸羟甲基转移酶 serinehydroxy methyltransferase | 1 |
Table 2
Distribution of SSR with different repeat motifs"
重复次数 replicates | 重复基元长度及其数目 length of repeat motif and number | ||||||
---|---|---|---|---|---|---|---|
单核苷酸 mononucleotide | 二核苷酸 dinucleotide | 三核苷酸 trinucleotide | 四核苷酸 tetranucleotide | 五核苷酸 pentanucleotide | 六核苷酸 hexanucleotide | ||
≥ 5~8 | 0 | 9 735 | 16 985 | 918 | 337 | 130 | |
≥9~12 | 27 294 | 3 025 | 6 56 | 50 | 6 | 2 | |
≥13~16 | 8 658 | 1 034 | 132 | 12 | 0 | 0 | |
≥17~20 | 3 826 | 716 | 30 | 35 | 0 | 2 | |
≥21~24 | 2 450 | 433 | 23 | 10 | 0 | 0 | |
总数 total number | 42 228 | 14 943 | 17 826 | 1 025 | 343 | 134 | |
占比/% percentage | 55.20 | 19.53 | 23.30 | 1.34 | 0.45 | 0.18 |
[1] |
WEI Q, JIAO C, GUO L, et al. Exploring key cellular processes and candidate genes regulatingthe primary thickening growth of Moso underground shoots[J]. New Phytologist, 2017,214:81-96. DOI: 10.1111/nph.14284.
doi: 10.1111/nph.14284 pmid: 27859288 |
[2] |
WEI Q, JIAO C, DING Y L, et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo[J]. Tree Physiology, 2018,38(4):641-654. DOI: 10.1093/treephys/ tpx129.
pmid: 29077967 |
[3] |
WEI Q, GUO L, JIAO C, et al. Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage[J]. Tree Physiology, 2019,39(7):1201-1214. DOI: 10.1093/treephys/tpz063.
pmid: 31135922 |
[4] | GUO L, SUN X, LI Z, et al. Morphological dissection and cellular and transcriptome characterizations of bamboo pith cavity formation reveal a pivotal role of genes related to programmed cell death[J]. Plant Biotechnology Journal, 2019,17(5):982-997. DOI: 10.1111/pbi.13033. |
[5] | 魏强, 丁雨龙. 矢竹地下茎转录组测序及节间生长相关基因表达分析[J]. 南京林业大学学报(自然科学版), 2017,41(5):42-48. |
WEI Q, DING Y L. Transcriptome sequencing, de novo assembly and expression analysis of several genes related to internode development in Pseudosasa japonica[J]. J Nanjing For Univ (Nat Sci Ed), 2017,41(5):42-48. DOI: 10.3969/j.issn.1000-2006.201601006. | |
[6] | JIAO Y, HU Q, ZHU Y, et al. Comparative transcriptomic analysis of the flower induction and development of the Lei bamboo (Phyllostachys violascens)[J]. BMC bioinformatics, 2019,20(25):1-12. DOI: 10.1186/s12859-019-3261-z. |
[7] | GAMUYAO R, NAGAI K, AYANO M, et al. Hormone distribution and transcriptome profiles in bamboo shoots provide insights on bamboo stem emergence and growth[J]. Plant and Cell Physiology, 2017,58(4):702-716. DOI: 10.1093/pcp/pcx023. |
[8] | LIU Y, WU C, HU X, et al. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis)[J]. Tree Physiology, 2019. DOI: 10.1093/treephys/tpz133. |
[9] | LI X, XIE L, ZHENG H, et al. Transcriptome profiling of postharvest shoots identifies PheNAP2-and PheNAP3-promoted shoot senescence[J]. Tree Physiology, 2019,39(12):2027-2044. DOI: 10.1093/treephys/tpz100. |
[10] | 柳延虎, 王璐, 于黎. 单分子实时测序技术的原理与应用[J]. 遗传, 2015,37(3):259-268. |
LIU Y H, WANG L, YU L. The principle and application of the single-molecule real-time sequencing technology[J]. HEREDITAS, 2015,37(3):259-268. DOI: 10.16288/j.yczz.14-323. | |
[11] |
ZHAO H, GAO Z, WANG L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis) [J]. Giga Science, 2018, 7(10): giy115. DOI: 10.1093/gigascience/giy115.
doi: 10.1093/gigascience/giy062 pmid: 29860514 |
[12] |
WANG T, WANG H, CAI D, et al. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis)[J]. The Plant Journal, 2017,91(4):684-699. DOI: 10.1111/tpj.13597.
doi: 10.1111/tpj.13597 pmid: 28493303 |
[13] | FU L, NIU B, ZHU Z, et al. CD-HIT: accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012,28(23):3150-3152. DOI: 10.1093/bioinformatics/bts565. |
[14] |
THIMM O, BLäSING O, GIBON Y, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes[J]. The Plant Journal, 2004,37(6):914-939. DOI: 10.1111/j.1365-313X.2004.02016.x.
doi: 10.1111/j.1365-313x.2004.02016.x pmid: 14996223 |
[15] | LOHSE M, NAGEL A, HERTER T, et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data[J]. Plant Cell Environment, 2014,37(5):1250-1258. DOI: 10.1111/pce.12231. |
[16] |
BEIER S, THIEL T, MÜNCH T, et al. MISA-web: a web server for microsatellite prediction[J]. Bioinformatics, 2017,33(16):2583-2585. DOI: 10.1093/bioinformatics/btx198.
doi: 10.1093/bioinformatics/btx198 pmid: 28398459 |
[17] | SUN L, LUO H, BU D, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Research, 2013, 41(17): e166-. DOI: 10.1093/nar/gkt646. |
[18] | KONG L, ZHANG Y, YE Z Q, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine[J]. Nucleic Acids Research, 2007, 35(S2): 345-349. 10.1093/nar/gkm391. |
[19] | FINN R D, COGGILL P, EBERHARDT R Y, et al. The Pfam protein families database: towards a more sustainable future[J]. Nucleic Acids Research, 2016,44(1):279-285. DOI: 10.1093/nar/gkv1344. |
[20] | LI A, ZHANG J, ZHOU Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme[J]. BMC Bioinformatics, 2014,15(1):311. DOI: 10.1186/1471-2105-15-311. |
[21] |
KIM H J, NAM H G, LIM P O. Regulatory network of NAC transcription factors in leaf senescence[J]. Current Opinion in Plant Biology, 2016,33:48-56. DOI: 10.1016/j.pbi.2016.06. 002.
doi: 10.1016/j.pbi.2016.06.002 pmid: 27314623 |
[22] |
LIU M, QIAO G, JIANG J, et al. Transcriptome sequencing and de novo analysis for Ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform[J]. PLoS ONE, 2012,7(10):e46766. DOI: 10.1371/journal.pone.0046766.
doi: 10.1371/journal.pone.0046766 |
[23] |
CUI K, WANG H, LIAO S, et al. Transcriptome sequencing and analysis for culm elongation of the world’s largest bamboo (Dendrocalamus sinicus)[J]. PLoS ONE, 2016,11(6):e0157362. DOI: 10.1371/ journal.pone.0157362.
doi: 10.1371/journal.pone.0157362 pmid: 27304219 |
[24] |
王身昌, 胡尚连, 曹颖, 等. 梁山慈竹高通量转录组测序及差异表达基因分析[J]. 华北农学报, 2016,31(3):65-71.
doi: 10.7668/hbnxb.2016.03.010 |
WANG S C, HU S L, CAO Y, et al. High-throughput RNA-seq and analysis on differential expressed gene from Dendrocalamus farinosus[J]. Acta Agriculturae Boreali-Sinica, 2016,31(3):65-71. DOI: 10.7668 /hbnxb.2016.03.010. | |
[25] |
THIEL T, MICHALEK W, VARSHNEY R, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theoretical and Applied Genetics, 2003,106(3):411-422. DOI: 10.1007/s00122-002-1031-0.
doi: 10.1007/s00122-002-1031-0 pmid: 12589540 |
[26] | TRANBARGER T J, KLUABMONGKOL W, SANGSRAKRU D, et al. SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis[J]. BMC Plant Biology, 2012,12(1):1. DOI: 10.1186/1471-2229-12-1. |
[27] |
TAHERI S, LEE ABDULLAH T, YUSOP M R, et al. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants[J]. Molecules, 2018,23(2):399.DOI: 10.3390/ molecules 23020399.
doi: 10.3390/molecules23020399 |
[28] |
CHEKANOVA J A. Long non-coding RNAs and their functions in plants[J]. Current Opinion in Plant Biology, 2015,27:207-216. DOI: 10.1016/j.pbi.2015.08.003.
doi: 10.1016/j.pbi.2015.08.003 pmid: 26342908 |
[29] |
MENG X, ZHANG P, CHEN Q, et al. Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development[J]. BMC genomics, 2018,19(1):607. DOI: 10.1186/s12864-018-4993-2.
doi: 10.1186/s12864-018-4993-2 pmid: 30103673 |
[30] | 郭兆武, 李合松, 王若仲, 等. 高产杂交稻 ‘两优培九’剑叶及其叶鞘的光合作用[J]. 植物生理与分子生物学学报, 2007,33(6):531-537. |
GUO Z W, LI H S, WANG R Z, et al. Photosynjournal of the flag leaf blade and its sheath in high-yielding hybrid rice ‘Liangyoupeijiu’[J]. Journal of Plant Physiology and Molecular Biology, 2007,33(6):531-537. | |
[31] | SAKURABA Y, JEONG J, KANG M Y, et al. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis[J]. Nature Communications, 2014,5(1):1-13. DOI: 10.1038/ncomms5636. |
[32] |
KIM Y S, SAKURABA Y, HAN S H, et al. Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence[J]. Plant and Cell Physiology, 2013,54(10):1660-1672. DOI: 10.1093/pcp/pct113.
doi: 10.1093/pcp/pct113 pmid: 23926065 |
[33] |
LIANG M, LI H, ZHOU F, et al. Subcellular distribution of NTL transcription factors in Arabidopsis thaliana[J]. Traffic, 2015,16(10):1062-1074. DOI: 10.1111/tra.12311.
doi: 10.1111/tra.12311 pmid: 26201836 |
[34] |
NG S, IVANOVA A, DUNCAN O, et al. A membrane-bound NAC transcription factor, ANAC017, mediates mitochondrial retrograde signaling in Arabidopsis[J]. The Plant Cell, 2013,25(9):3450-3471. DOI: 10.1105/tpc.113.113985.
doi: 10.1105/tpc.113.113985 pmid: 24045017 |
[35] |
GUO Y, GAN S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence[J]. The Plant Journal, 2006,46(4):601-612. DOI: 10.1111/j.1365-313X.2006.02723.x.
doi: 10.1111/j.1365-313X.2006.02723.x pmid: 16640597 |
[36] |
WU A, ALLU A D, GARAPATI P, et al. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis[J]. The Plant Cell, 2012,24(2):482-506. DOI: 10.1105/tpc.111.090894.
doi: 10.1105/tpc.111.090894 pmid: 22345491 |
[37] |
HICKMAN R, HILL C, PENFOLD C A, et al. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves[J]. The Plant Journal, 2013,75(1):26-39. DOI: 10.1111/tpj.12194.
pmid: 23578292 |
[38] |
YANG S D, SEO P J, YOON H K, et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[J]. The Plant Cell, 2011,23(6):2155-2168. DOI: 10.1105/tpc.111.084913.
doi: 10.1105/tpc.111.084913 pmid: 21673078 |
[1] | QUE Feng, LIU Qingnan, ZHA Ruofei, WEI Qiang. Identification and analysis of senescence related WRKYs in sheath of Bambusa multiplex [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 113-123. |
[2] | WANG Xiaojing, WANG Tao, YANG Kai, LI Lubin. Expressional profiling of circRNAs under PEG and NaCl stresses in germinated moso bamboo seeds [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 17-24. |
[3] | YANG Jiading, LIU Yujie, FENG Jianyuan, ZHANG Yuanlan. Nitrogen resorption machanism during leaf senescence in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 1-8. |
[4] | ZHANG Qiang, ZHOU Peng, LIU Changlai, YU Yongfan, ZHANG Min, YANG Jiading. Comparison of transcriptomic activity of Ilex integra and I. purpurea roots with NaCl treatments [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 99-108. |
[5] | ZHU Peihuang, CHEN Yu, JI Kongshu. A review of terpene synthases and genes in Pinaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 233-244. |
[6] | TIAN Xueyao, ZHOU Jie, WANG Baosong, HE Kaiyue, HE Xudong. Cloning and expression pattern analysis of NAC genes in Salix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 119-124. |
[7] | MENG Dekai, XU Zhipeng, LIU Ningning, WANG Meng, WANG Chu, LIU Guifeng. Characterization of photosynthetic and growth traits of precocious leaf senescence mutant of BpGH3.5 transgenic lines in Betula platyphylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 37-43. |
[8] | LIU Xiaowei,YANG Xiuyan,WU Haiwen,LIU Xiaoyan,ZHU Jianfeng,ZHANG Huaxin. Transcriptome analysis of differentially expressed genes in Reaumuria soongorica seeds germination under NaCl stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 28-36. |
[9] | LYU Donglin,LIN Lin,GUO Yiwen, HAN Rui,JIANG Jing. Characterization of gene expression in anthocyanin synthesis and salt tolerance of Betula pendula ‘Purple Rain' [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(02): 25-32. |
[10] | CHEN Peizhen, WU Xiaogang, WEI Qiang, WU Xing, JI Kongshu. Research progress of lignin synthesis gene in Pinaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 169-176. |
[11] | ZHU Hong, WANG Xiaomin, HUANG Tao, WU Wenlong, LI Weilin. Effect of NaCl stress on bacterial community diversity and core microbiome in rhizosphere and bulk soil of beach plum(Prunus maritima Marshall) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 49-54. |
[12] | WU Zhen, WANG Wei, WANG Hao. Comprehensive evaluation of landscape resources in hydrographic net region of southern Jiangsu Province based on GIS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 202-208. |
[13] | WANG Haoran, LI Shuangshuang,LE Lina,KUANG Hualin,HUANG Minren,CHEN Ying. Interaction between miR164a and its target PeNAC1 [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 29-33. |
[14] | KANG Guijuan, LI Yu, ZENG Rizhong. Clone and expression analysis of HbNAM from Hevea brasiliensis Muell. Arg. [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(01): 59-64. |
[15] | WANG Haoran, SHAO Zhilong, ZHU Yanyu, KUANG Hualin, HUANG Minren, CHEN Ying. Cloning and sub-cellular localization of PdNAC 1 in poplar ‘Nanlin895’ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(03): 50-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||