JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2): 220-226.doi: 10.3969/j.issn.1000-2006.201904056
Received:
2019-04-27
Revised:
2019-08-25
Online:
2020-03-30
Published:
2020-04-01
Contact:
CHENG Qiang
E-mail:xiaohongju@njfu.edu.cn;chengqiang@njfu.edu.cn
CLC Number:
XIAO Hongju, CHENG Qiang. The progress in plant pattern recognition receptor FLS2[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 220-226.
[1] |
JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.DOI: 10.1038/nature05286.
doi: 10.1038/nature05286 |
[2] |
CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4):803-814.DOI: 10.1016/j.cell.2006.02.008.
doi: 10.1016/j.cell.2006.02.008 |
[3] |
O’NEILL L A J, GOLENBOCK D, BOWIE A G. The history of Toll-like receptors:redefining innate immunity[J]. Nat Rev Immunol, 2013, 13(6):453-460.DOI: 10.1038/nri3446.
doi: 10.1038/nri3446 |
[4] |
FELIX G, DURAN J D, VOLKO S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. Plant J, 1999, 18(3):265-276.DOI: 10.1046/j.1365-313x.1999.00265.x.
doi: 10.1046/j.1365-313X.1999.00265.x |
[5] |
GÓMEZ-GÓMEZ L, FELIX G, BOLLER T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana[J]. Plant J, 1999, 18(3):277-284.DOI: 10.1046/j.1365-313x.1999.00451.x.
doi: 10.1046/j.1365-313X.1999.00451.x |
[6] |
GÓMEZ-GÓMEZ L, BOLLER T. FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Mol Cell, 2000, 5(6):1003-1011.DOI: 10.1016/s1097-2765(00)80265-8.
doi: 10.1016/S1097-2765(00)80265-8 |
[7] |
GÓMEZ-GÓMEZ L, BOLLER T. Flagellin perception:a paradigm for innate immunity[J]. Trends Plant Sci, 2002, 7(6):251-256.DOI: 10.1016/s1360-1385(02)02261-6.
doi: 10.1016/S1360-1385(02)02261-6 |
[8] |
CHINCHILLA D, BAUER Z, REGENASS M, et al. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception[J]. Plant Cell, 2006, 18(2):465-476.DOI: 10.1105/tpc.105.036574.
doi: 10.1105/tpc.105.036574 |
[9] |
DUNNING F M, SUN W X, JANSEN K L, et al. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception[J]. Plant Cell, 2007, 19(10):3297-3313.DOI: 10.1105/tpc.106.048801.
doi: 10.1105/tpc.106.048801 |
[10] |
MUELLER K, BITTEL P, CHINCHILLA D, et al. Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato[J]. Plant Cell, 2012, 24(5):2213-2224.DOI: 10.1105/tpc.112.096073.
doi: 10.1105/tpc.112.096073 |
[11] |
SUN Y, LI L, MACHO A P, et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science, 2013, 342(6158):624-628.DOI: 10.1126/science.1243825.
doi: 10.1126/science.1243825 |
[12] |
LI J, WEN J Q, LEASE K A, et al. BAK1,an Arabidopsis LRR receptor-like protein kinase,interacts with BRI1 and modulates brassinosteroid signaling[J]. Cell, 2002, 110(2):213-222.DOI: 10.1016/S0092-8674(02)00812-7.
doi: 10.1016/S0092-8674(02)00812-7 |
[13] |
CHINCHILLA D, ZIPFEL C, ROBATZEK S, et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J]. Nature, 2007, 448(7152):497-500.DOI: 10.1038/nature05999.
doi: 10.1038/nature05999 |
[14] |
HEESE A, HANN D R, GIMENEZ-IBANEZ S, et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants[J]. Proc Natl Acad Sci U S A, 2007, 104(29):12217-12222.DOI: 10.1073/pnas.0705306104.
doi: 10.1073/pnas.0705306104 |
[15] |
SAUR I M L, KADOTA Y, SKLENAR J, et al. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana[J]. Proc Natl Acad Sci USA, 2016, 113(12):3389-3394.DOI: 10.1073/pnas.1511847113.
doi: 10.1073/pnas.1511847113 |
[16] |
ALBERT I, BÖHM H, ALBERT M, et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nat Plants, 2015, 1(10):15140.DOI: 10.1038/nplants.2015.140.
doi: 10.1038/nplants.2015.140 |
[17] |
LADWIG F, DAHLKE R I, STÜHRWOHLDT N, et al. Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17,h+-ATPase,and BAK1[J]. Plant Cell, 2015, 27(6):1718-1729.DOI: 10.1105/tpc.15.00306.
doi: 10.1105/tpc.15.00306 |
[18] | YEH Y H, PANZERI D, KADOTA Y, et al. The Arabidopsis malectin-like/LRR-RLK IOS1 is critical for BAK1-dependent and BAK1-independent pattern-triggered immunity[J]. Plant Cell, 2016:tpc.00313.2016.DOI: 10.1105/tpc.16.00313. |
[19] |
STEGMANN M, MONAGHAN J, SMAKOWSKA-LUZAN E, et al. The receptor kinase Fer is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355(6322):287-289.DOI: 10.1126/science.aal2541.
doi: 10.1126/science.aal2541 |
[20] |
SMAKOWSKA-LUZAN E, MOTT G A, PARYS K, et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases[J]. Nature, 2018, 553(7688):342-346.DOI: 10.1038/nature25184.
doi: 10.1038/nature25184 |
[21] |
LU D, WU S, GAO X, et al. A receptor-like cytoplasmic kinase,BIK1,associates with a flagellin receptor complex to initiate plant innate immunity[J]. Proc Natl Acad Sci U S A, 2010, 107(1):496-501.DOI: 10.1073/pnas.0909705107.
doi: 10.1073/pnas.0909705107 |
[22] |
KADOTA Y, SKLENAR J, DERBYSHIRE P, et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Mol Cell, 2014, 54(1):43-55.DOI: 10.1016/j.molcel.2014.02.021.
doi: 10.1016/j.molcel.2014.02.021 |
[23] |
LIANG X X, MA M M, ZHOU Z Y, et al. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases[J]. Cell Res, 2018, 28(5):529-543.DOI: 10.1038/s41422-018-0027-5.
doi: 10.1038/s41422-018-0027-5 |
[24] |
ZHONG C L, ZHANG C, LIU J Z. Heterotrimeric G protein signaling in plant immunity[J]. J Exp Bot, 2019, 70(4):1109-1118.DOI: 10.1093/jxb/ery426.
doi: 10.1093/jxb/ery426 |
[25] |
BI G Z, ZHOU Z Y, WANG W B, et al. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis[J]. Plant Cell, 2018, 30(7):1543-1561.DOI: 10.1105/tpc.17.00981.
doi: 10.1105/tpc.17.00981 |
[26] |
COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nat Rev Immunol, 2016, 16(9):537-552.DOI: 10.1038/nri.2016.77.
doi: 10.1038/nri.2016.77 |
[27] |
IMKAMPE J, HALTER T, HUANG S H, et al. The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1[J]. Plant Cell, 2017, 29(9):2285-2303.DOI: 10.1105/tpc.17.00376.
doi: 10.1105/tpc.17.00376 |
[28] |
SEGONZAC C, MACHO A P, SANMARTÍN M, et al. Negative control of BAK 1 by protein phosphatase 2A during plant innate immunity[J]. EMBO J, 2014, 33(18):2069-2079.DOI: 10.15252/embj.201488698.
doi: 10.15252/embj.201488698 |
[29] |
LU D, LIN W, GAO X, et al. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity[J]. Science, 2011, 332(6036):1439-1442.DOI: 10.1126/science.1204903.
doi: 10.1126/science.1204903 |
[30] |
MBENGUE M, BOURDAIS G, GERVASI F, et al. Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases[J]. Proc Natl Acad Sci USA, 2016, 113(39):11034-11039.DOI: 10.1073/pnas.1606004113.
doi: 10.1073/pnas.1606004113 |
[31] |
ROBATZEK S, BITTEL P, CHINCHILLA D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2,an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Mol Biol, 2007, 64(5):539-547.DOI: 10.1007/s11103-007-9173-8.
doi: 10.1007/s11103-007-9173-8 |
[32] |
TRDÁ L, FERNANDEZ O, BOUTROT F, et al. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacteriumBurkholderia phytofirmansand plant pathogenic bacteria[J]. New Phytol, 2014, 201(4):1371-1384.DOI: 10.1111/nph.12592.
doi: 10.1111/nph.2014.201.issue-4 |
[33] |
SHI Q C, FEBRES V J, JONES J B, et al. A survey of FLS2 genes from multiple Citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp.citri[J]. Hortic Res, 2016, 3:16022.DOI: 10.1038/hortres.2016.22.
doi: 10.1038/hortres.2016.22 |
[34] |
TAKAI R, ISOGAI A, TAKAYAMA S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Mol Plant-Microbe Interactions, 2008, 21(12):1635-1642.DOI: 10.1094/mpmi-21-12-1635.
doi: 10.1094/MPMI-21-12-1635 |
[35] |
XIANG T T, ZONG N, ZOU Y, et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases[J]. Curr Biol, 2008, 18(1):74-80.DOI: 10.1016/j.cub.2007.12.020.
doi: 10.1016/j.cub.2007.12.020 |
[36] |
GÖHRE V, SPALLEK T, HÄWEKER H, et al. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB[J]. Curr Biol, 2008, 18(23):1824-1832.DOI: 10.1016/j.cub.2008.10.063.
doi: 10.1016/j.cub.2008.10.063 |
[37] |
LI L, KIM P, YU L P, et al. Activation-dependent destruction of a Co-receptor by a Pseudomonas syringae effector dampens plant immunity[J]. Cell Host Microbe, 2016, 20(4):504-514.DOI: 10.1016/j.chom.2016.09.007.
doi: 10.1016/j.chom.2016.09.007 |
[38] |
ZHOU J G, WU S J, CHEN X, et al. The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1[J]. Plant J, 2014, 77(2):235-245.DOI: 10.1111/tpj.12381.
doi: 10.1111/tpj.2013.77.issue-2 |
[39] |
ZHANG J, LI W, XIANG T T, et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host Microbe, 2010, 7(4):290-301.DOI: 10.1016/j.chom.2010.03.007.
doi: 10.1016/j.chom.2010.03.007 |
[40] |
FENG, YANG F, RONG W, et al. A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases[J]. Nature, 2012, 485(7396):114-118.DOI: 10.1038/nature10962.
doi: 10.1038/nature10962 |
[41] |
ZHENG X Z, MCLELLAN H, FRAITURE M, et al. Functionally redundant RXLR effectors fromPhytophthora infestans act at different steps to suppress early flg22-triggered immunity[J]. PLoS Pathog, 2014, 10(4):e1004057.DOI: 10.1371/journal.ppat.1004057.
doi: 10.1371/journal.ppat.1004057 |
[42] |
GARCIA A V, CHARRIER A, SCHIKORA A, et al. Salmonella enterica flagellin is recognized via FLS2 and activates PAMP-triggered immunity in Arabidopsis thaliana[J]. Mol Plant, 2014, 7(4):657-674.DOI: 10.1093/mp/sst145.
doi: 10.1093/mp/sst145 |
[43] |
LEE H, CHAH O K, SHEEN J. Stem-cell-triggered immunity through CLV3p-FLS2 signalling[J]. Nature, 2011, 473(7347):376-379.DOI: 10.1038/nature09958.
doi: 10.1038/nature09958 |
[44] |
DANNA C H, MILLET Y A, KOLLER T, et al. The Arabidopsis flagellin receptor FLS2 mediates the perception of Xanthomonas Ax21 secreted peptides[J]. Proc Natl Acad Sci U S A, 2011, 108(22):9286-9291.DOI: 10.1073/pnas.1106366108.
doi: 10.1073/pnas.1106366108 |
[45] | GEWIN V. Rice researchers redress retraction[J]. Nature, 2015 DOI: 10.1038/nature.2015.18055. |
[46] |
MUELLER K, CHINCHILLA D, ALBERT M, et al. Contamination risks in work with synthetic peptides:flg22 as an example of a pirate in commercial peptide preparations[J]. Plant Cell, 2012, 24(8):3193-3197.DOI: 10.1105/tpc.111.093815.
doi: 10.1105/tpc.111.093815 |
[47] |
HURST C H, TURNBULL D, MYLES S M, et al. Variable effects of C-terminal fusions on FLS2 function:not all epitope tags are created equal[J]. Plant Physiol, 2018, 177(2):522-531.DOI: 10.1104/pp.17.01700.
doi: 10.1104/pp.17.01700 |
[48] |
HAO G X, PITINO M, DUAN Y P, et al. Reduced susceptibility to Xanthomonas citri in transgenic Citrus expressing the FLS2 receptor From Nicotiana benthamiana[J]. Mol Plant-Microbe Interactions, 2016, 29(2):132-142.DOI: 10.1094/mpmi-09-15-0211-r.
doi: 10.1094/MPMI-09-15-0211-R |
[49] |
LACOMBE S, ROUGON-CARDOSO A, SHERWOOD E, et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance[J]. Nat Biotechnol, 2010, 28(4):365-369.DOI: 10.1038/nbt.1613.
doi: 10.1038/nbt.1613 |
[1] | SHEN Yang, DI Jingjing, CHEN Ying, FENG Kai, LU Jinling, HU Yuchen. Effects of H2S donor NaHS on the adaptability and antioxidant properties of Agave americana plantlets under an in vitro culture of osmotic stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 121-128. |
[2] | HAO Zhaodong, SHI Jisen, CHEN Jinhui. Research progresses on regulatory mechanisms of carotenoid-mediated plant flower coloration [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 73-82. |
[3] | HE Qingqing, LIU Chuanqiang, LI Jianjian, WANG Jingjing, YAO Xiang, ZHOU Shenghao, CHEN Ying, WANG Haoran. Cloning of EoNLA gene in Eremochloa ophiuroides and the transgenic Arabidopsis phenotypic characterization under various phosphorus levels [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 134-142. |
[4] | HOU Fangmiao, LIU Can, PEI Runtian, WANG Jing. Effects of China’s environmental regulations on the global value chain status of wood processing industry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 231-240. |
[5] | YANG Yi, LIU Bo, YE Jianren, SU Luhui. A study on the ecological control of red blight of Metasequoia glyptostroboides by integrated forest management [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 90-98. |
[6] | WANG Zhuwen, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. Functional analyses of PtrHBI 1 gene in Populus trichocarpa based on CRISPR/Cas9 [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 31-39. |
[7] | JI Baozhong, ZHANG Lei, LIU Shuwen, JIANG Hongjian, JIN Mingxia. Research progress of termite caste differentiation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 1-9. |
[8] | SU Tao, ZHOU Huaiye, ZHOU Biyao, SHI Wanting, ZHANG Qi. The enzyme purification and functional evaluation of a root-expressed invertase inhibitor in poplar [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 169-174. |
[9] | TANG Jixin, JIA Hongyan,WANG Ke, ZENG Ji, ZHENG Lu, WANG Yanan,YANG Baoguo. Effect of density regulation on growth of Mytilaria laosensis plantation with middle age [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 45-53. |
[10] | TIAN Jing, ZHAO Xueyuan, XIE Longsheng, QUAN Jinyi, YAO Lianmei, WANG Guodong, ZHENG Yaoqang, LIU Xuemei. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(03): 159-166. |
[11] | FAN Ben, CHEN Sheng, LI Yulong. Structure, function and mechanisms of bacterial protein Hfq [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 155-162. |
[12] | LIU Jingjing, MAO Xia, LI Xiaochun, FU Xiangxiang. A review on flowering mechanism in heterodichogamous plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(01): 147-154. |
[13] | LIU Qiang, WANG Zhanwu, ZHOU Xiaomei. Resistance physiological responses of two species of Lycium to NaHCO3 stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(06): 165-169. |
[14] | WANG Pengkai, SHI Jisen, ZHANG Yanjuan, WU Shuang, CHEN Jinhui*. The research progress of the pattern formation and gene regulation mechanism in plant embryogenesis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(05): 134-138. |
[15] | ZHANG Wangxiang. Effects of flooding stress on the physiological adaption metabolism of three tree species [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(05): 11-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||