JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6): 31-39.doi: 10.12302/j.issn.1000-2006.202107030
Special Issue: 专题报道; 林木 CRISPR/Cas基因编辑专题
Previous Articles Next Articles
WANG Zhuwen(), GUO Yanjiao, LI Shuang, ZHOU Chenguang*(), CHIANG Vincent, LI Wei*()
Received:
2021-07-20
Accepted:
2021-08-19
Online:
2021-11-30
Published:
2021-12-02
Contact:
ZHOU Chenguang,LI Wei
E-mail:wzw981012@163.com;zhouchenguang@nefu.edu.cn;weili2015@nefu.edu.cn
CLC Number:
WANG Zhuwen, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. Functional analyses of PtrHBI 1 gene in Populus trichocarpa based on CRISPR/Cas9[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 31-39.
Table 1
Primer list in the experiments"
引物名称 primer name | 序列 sequences | 用途 application |
---|---|---|
PtrHBI1-1F | 5'-CACCATGCTGTCTCAAAAACACATCTTT-3' | PtrHBI1基因克隆 cloning of PtrHBI1 gene |
PtrHBI1-1R | 5'-TCATTCAGGACCATTACTGTAATA-3' | |
PtrHBI1-2F | 5'-CTAGGGATCCATGCTGTCTCAAAAACACATCT-3' | pUC19-35S-PtrHBI1-GFP瞬时表达载体构建 construction of pUC19-35S-ptrHBI1-GFP transient expression vector |
PtrHBI1-2R | 5'-CTAGGTCGACATGGAATCCCAAATTTTGAAGG-3' | |
PtrHBI1-3F | 5'-AGCTGATTAGCCAATTCTATCA-3' | PtrHBI1基因探针 PtrHBI1 gene probe |
PtrHBI1-3R | 5'-GGTTTACGTAGTTGTTCTCCT-3' | |
PtrHBI1-4F | 5'GAATTGTAATACGACTCACTATAGGGAGCTGATT AGCCAATTCTATCA-3' | |
PtrHBI1-4R | 5'GAATTGTAATACGACTCACTATAGGGGGTTTACGT AGTTGTTCTCCT-3' | |
PtrHBI1-g-F PtrHBI1-g-R | 5'-GATTGAGAAGCAGAGGTAACGGCA-3' 5'-TGCCGTTACCTCTGCTTCTCCAAA-3' | pEgP237载体构建,R端引物亦用于转基因植株鉴定 vector construction of pEgP237,PtrHBI1-g-R also for transgenic identification |
M13F | 5'-GTAAAACGACGGCCAG-3' | 转基因鉴定 transgenic identification |
PtrHBI1-5F PtrHBI1-5R | 5'-GAGATAGGATTGATTGGAAGG-3' 5'-AGTCTTCTGATTTTCCTTCGA-3' | 靶位点编辑情况的鉴定 indetification of gene editing |
Table 2
Wood composition of WT and ptrhbi1 mutant plants in P. trichocarpa%"
样本 sample | 碳水化合物占比carbohydrates rate | 木质素占比lignin rate | ||||||
---|---|---|---|---|---|---|---|---|
葡萄糖 glucose | 木糖 xylose | 半乳糖 galactose | 阿拉伯糖 the Arab sugar | 总计 total | 酸不可溶性 木质素 acid insoluble lignin | 酸可溶性 木质素 acid soluble lignin | 总计 total | |
野生型 WT | 53.70±0.75 | 12.25±0.31 | 1.25±0.03 | 2.36±0.05 | 69.55±1.10 | 19.40±0.58 | 3.63±0.05 | 23.03±0.62 |
突变体 ptrhbi1 | 57.61±0.23** | 11.64±0.08 | 1.04±0.02** | 2.5±0.01* | 72.79±0.17* | 17.39±0.33* | 3.84±0.05* | 21.22±0.28 |
[1] |
KO J H, KIM H T, HAN K H. Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing[J]. Plant Biotechnol Rep, 2011, 5(1):1-7.DOI: 10.1007/s11816-010-0159-7.
doi: 10.1007/s11816-010-0159-7 |
[2] | 许会敏, 王莉, 曹德昌, 等. 维管形成层活动周期调控研究进展[J]. 科学通报, 2015, 60(7):619-629. |
XU H M, WANG L, CAO D C, et al. Research progress on the regulation of cambium activity periodicity[J]. Chin Sci Bull, 2015, 60(7):619-629.DOI: 10.1360/N972014-01037.
doi: 10.1360/N972014-01037 |
|
[3] | 文静, 王春涛, 杨永平. 植物木质部次生细胞壁加厚调控的研究进展[J]. 西南林业大学学报, 2021, 41(2):182-188. |
WEN J, WANG C T, YANG Y P. Advances in regulation of xylem secondary cell wall thickening in plants[J]. J Southwest For Coll, 2021, 41(2):182-188.DOI: 10.11929/j.swfu.201909077.
doi: 10.11929/j.swfu.201909077 |
|
[4] |
LIU C, YU H, RAO X L, et al. Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1[J]. PNAS, 2021, 118(23): e2106367118.DOI: 10.1073/pnas.2010911118.
doi: 10.1073/pnas.2010911118 |
[5] |
MARRIOTT P E, GóMEZ L D, MCQUEEN-MASON S J,. Unlocking the potential of lignocellulosic biomass through plant science[J]. New Phytol, 2016, 209(4):1366-1381.DOI: 10.1111/nph.13684.
doi: 10.1111/nph.13684 |
[6] |
ZHONG R, LEE C, ZHOU J, et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynjournal in Arabidopsis[J]. Plant Cell, 2008, 20(10):2763-2782.DOI: 10.1105/tpc.108.061325.
doi: 10.1105/tpc.108.061325 |
[7] |
ZHANG J, NIEMINEN K, SERRA J A, et al. The formation of wood and its control[J]. Curr Opin Plant Biol, 2014, 17:56-63.DOI: 10.1016/j.pbi.2013.11.003.
doi: 10.1016/j.pbi.2013.11.003 |
[8] |
CHEN Y, ZHU P H, WU F, et al. Identification and characterization of the basic helix-loop-helix transcription factor family in Pinus massoniana[J]. Forests, 2020, 11(12):1292.DOI: 10.3390/f11121292.
doi: 10.3390/f11121292 |
[9] |
ZHANG T, LV W, ZHANG H, et al. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize[J]. BMC Plant Biol, 2018, 18(1):235.DOI: 10.1186/s12870-018-1441-z.
doi: 10.1186/s12870-018-1441-z |
[10] |
BAI M Y, FAN M, OH E, et al. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis[J]. Plant Cell, 2012, 24(12):4917-4929.DOI: 10.1105/tpc.112.105163.
doi: 10.1105/tpc.112.105163 |
[11] | 陈儒钢, 巩振辉, 逯明辉, 等. 植物抗逆反应中的转录因子网络研究进展[J]. 农业生物技术学报, 2010, 18(1):126-134. |
CHEN R G, GONG Z H, LU M H, et al. Research advance of the transcription factors networks related to plant adverse environmental stress[J]. J Agric Biotechnol, 2010, 18(1):126-134.DOI: 10.3969/j.issn.1674-7968.2010.01.020.
doi: 10.3969/j.issn.1674-7968.2010.01.020 |
|
[12] |
TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770.DOI: 10.1105/tpc.013839.
doi: 10.1105/tpc.013839 |
[13] |
HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5):735-747.DOI: 10.1093/molbev/msg088.
doi: 10.1093/molbev/msg088 |
[14] |
LEDENT V, VERVOORT M. The basic helix-loop-helix protein family:comparative genomics and phylogenetic analysis[J]. Genome Res, 2001, 11(5):754-770.DOI: 10.1101/gr.177001.
doi: 10.1101/gr.177001 |
[15] |
CHU X, LI M, ZHANG S, et al. HBI1-TCP20 interaction positively regulates the CEPs-mediated systemic nitrate acquisition[J]. J Integr Plant Biol, 2021, 63(5):902-912.DOI: 10.1111/jipb.13035.
doi: 10.1111/jipb.13035 |
[16] |
CAI H, CHAI M, CHEN F, et al. HBI1 Acts downstream of ERECTA and SWR1 in regulating inflorescence architecture through the activation of the brassinosteroid and auxin signaling pathways[J]. New Phytol, 2021, 229(1):414-428.DOI: 10.1111/nph.16840.
doi: 10.1111/nph.16840 |
[17] |
FERRERO V, VIOLA I L, ARIEL F D, et al. Class I TCP transcription factors target the gibberellin biosynjournal gene GA20ox1 and the growth-promoting genes HBI1 and PRE6 during thermomorphogenic growth in Arabidopsis[J]. Plant Cell Physiol, 2019, 60(8):1633-1645.DOI: 10.1093/pcp/pcz137.
doi: 10.1093/pcp/pcz137 |
[18] |
WANG S, LI L, XU P, et al. CRY1 interacts directly with HBI1 to regulate its transcriptional activity and photomorphogenesis in Arabidopsis[J]. J Exp Bot, 2018, 69(16):3867-3881.DOI: 10.1093/jxb/ery209.
doi: 10.1093/jxb/ery209 |
[19] |
FAN M, BAI M Y, KIM J G, et al. The bHLH transcription factor HBI1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis[J]. Plant Cell, 2014, 26(2):828-841.DOI: 10.1105/tpc.113.121111.
doi: 10.1105/tpc.113.121111 |
[20] |
LI Z, LIU Z B, XING A, et al. Cas9-guide RNA directed genome editing in soybean[J]. Plant Physiol, 2015, 169(2):960-970.DOI: 10.1104/pp.15.00783.
doi: 10.1104/pp.15.00783 |
[21] |
HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278.DOI: 10.1016/j.cell.2014.05.010.
doi: 10.1016/j.cell.2014.05.010 |
[22] |
ALI Z, ABUL-FARAJ A, LI L, et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system[J]. Mol Plant, 2015, 8(8):1288-1291.DOI: 10.1016/j.molp.2015.02.011.
doi: 10.1016/j.molp.2015.02.011 |
[23] |
DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096.DOI: 10.1126/science.1258096.
doi: 10.1126/science.1258096 |
[24] |
FAN D, LIU T, LI C, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015, 5:12217.DOI: 10.1038/srep12217.
doi: 10.1038/srep12217 |
[25] |
ZHOU X H, JACOBS T B, XUE L J, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J]. New Phytol, 2015, 208(2):298-301.DOI: 10.1111/nph.13470.
doi: 10.1111/nph.13470 |
[26] |
LIN Y C, LI W, CHEN H, et al. A simple improved-throughput xylem protoplast system for studying wood formation[J]. Nat Protoc, 2014, 9(9):2194-2205.DOI: 10.1038/nprot.2014.147.
doi: 10.1038/nprot.2014.147 |
[27] |
JAVELLE M, MARCO C F, TIMMERMANS M. In situ hybridization for the precise localization of transcripts in plants[J]. J Vis Exp, 2011(57):e3328.DOI: 10.3791/3328.
doi: 10.3791/3328 |
[28] |
WANG Z, MAO Y, GUO Y, et al. MYB transcription Factor161 mediates feedback regulation of Secondary wall-associated NAC-Domain1 family genes for wood formation[J]. Plant Physiol, 2020, 184(3):1389-1406.DOI: 10.1104/pp.20.01033.
doi: 10.1104/pp.20.01033 |
[29] |
LI S, ZHEN C, XU W, et al. Simple,rapid and efficient transformation of genotype Nisqually-1:a basic tool for the first sequenced model tree[J]. Sci Rep, 2017, 7(1):2638.DOI: 10.1038/s41598-017-02651-x.
doi: 10.1038/s41598-017-02651-x |
[30] |
HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5):735-747.DOI: 10.1093/molbev/msg088.
doi: 10.1093/molbev/msg088 |
[31] |
LI L, ZHOU Y, CHENG X, et al. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation[J]. PNAS, 2003, 100(8):4939-4944.DOI: 10.1073/pnas.0831166100.
doi: 10.1073/pnas.0831166100 |
[32] |
SAITO K, WATANABE Y, SHIRAKAWA M, et al. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry[J]. Plant J, 2012, 69(3):542-552.DOI: 10.1111/j.1365-313x.2011.04811.x.
doi: 10.1111/j.1365-313x.2011.04811.x |
[33] |
GUI J, LAM P Y, TOBIMATSU Y, et al. Fibre-specific regulation of lignin biosynjournal improves biomass quality in Populus[J]. New Phytol, 2020, 226(4):1074-1087.DOI: 10.1111/nph.16411.
doi: 10.1111/nph.16411 |
[34] |
ZHAO K, LI S, YAO W, et al. Characterization of the basic helix-loop-helix gene family and its tissue-differential expression in response to salt stress in poplar[J]. Peer J, 2018, 6:e4502.DOI: 10.7717/peerj.4502.
doi: 10.7717/peerj.4502 |
[35] |
CHEN F, DIXON R A. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nat Biotechnol, 2007, 25(7):759-761.DOI: 10.1038/nbt1316.
doi: 10.1038/nbt1316 |
[36] |
FREUDENBERG K. Lignin:its constitution and formation from p-Hydroxycinnamyl alcohols:lignin is duplicated by dehydrogenation of these alcohols;intermediates explain formation and structure[J]. Science, 1965, 148(3670):595-600.DOI: 10.1126/science.148.3670.595.
doi: 10.1126/science.148.3670.595 |
[37] |
SARKANEN K V. Renewable resources for the production of fuels and chemicals[J]. Science, 1976, 191(4228):773-776.
doi: 10.1126/science.191.4228.773 |
[38] |
LI L, CHENG X F, LESHKEVICH J, et al. The last step of syringyl monolignol biosynjournal in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase[J]. Plant Cell, 2001, 13(7):1567. DOI: 10.1105/tpc.13.7.1567.
doi: 10.1105/tpc.13.7.1567 |
[39] |
CHIANG V L. From rags to riches[J]. Nat Biotech, 2002, 20(6):557. DOI: 10.1038/nbt0602-557.
doi: 10.1038/nbt0602-557 |
[40] |
STEWART J J, AKIYAMA T, CHAPPIE C, et al. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar1[J]. Plant Physio, 2009, 150(2):621-635. DOI: 10.1104/pp.109.137059.
doi: 10.1104/pp.109.137059 |
[41] | 康向阳. 林木遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3):1-10. |
KANG X Y. Research progress of forest genetics and tree breeding[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):1-10.DOI: 10.3969/j.issn.1000-2006.202002033.
doi: 10.3969/j.issn.1000-2006.202002033 |
[1] | GAO Yuan, SUN Jiatong, ZHOU Chenguang, CHIANG Vincent, LI Wei, LI Shuang. Regulation of LBD12 transcription factor on wood formation in Populus trichocarpa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 29-38. |
[2] | WANG Wei, QIU Zhinan, LI Shuang, BAI Xiangdong, LIU Guifeng, JIANG Jing. CRISPR/Cas9 ribonucleoprotein-mediated precise mutation of BpGLK1 in birch without T-DNA insertion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 11-17. |
[3] | SUN Jiatong, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. A functional study of bHLH106 transcription factor based on CRISPR/Cas9 in Populus trichocarpa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 15-23. |
[4] | WANG Haoran, LI Shuangshuang,LE Lina,KUANG Hualin,HUANG Minren,CHEN Ying. Interaction between miR164a and its target PeNAC1 [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 29-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||