JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (6): 9-11.doi: 10.3969/j.issn.1000-2006.202008047
Special Issue: 野生动物保护与疫病防控专题
Previous Articles Next Articles
WANG Yingying1(), MA Yuying2, ZHANG Yong3, HUANG Zheng2,*()
Received:
2020-08-28
Revised:
2020-10-19
Online:
2020-11-30
Published:
2020-12-07
Contact:
HUANG Zheng
E-mail:yingying.xg.wang@jyu.fi;zhengyxhuang@gmail.com
CLC Number:
WANG Yingying, MA Yuying, ZHANG Yong, HUANG Zheng. Biodiversity and the risk of infectious diseases[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 9-11.
Table 1
The mechanisms of the dilution effects"
机制 mechanism | 定义 definition |
---|---|
易感宿主控制 susceptible host regulation | 加入弱宿主能够通过竞争或捕食等种间关系降低易感(强)宿主的丰度 |
接触减少 encounter reduction | 弱宿主的存在能够降低易感(强)宿主和已感染宿主(或已感染媒介)间的接触率 |
传染率减少 transmission reduction | 弱宿主的存在能够降低病原从已感染宿主(或已感染媒介)向易感(强)宿主传播的概率 |
媒介控制 vector regulation | 弱宿主的存在能够降低媒介的丰度 |
恢复率增加 recovery augmentation | 弱宿主的存在能够使已感染个体的回复率增加(如通过为感染个体提供更多食物资源等) |
Fig.1
The effectivity of barrier effects of low-competent species might differ in plant (A, B) and animal (C, D) diseases (Modified from Huang, et al. [43]) There is only one competent host species in both the original plant community (A) and the original animal community (C). Each individual of animal hosts uses a particular home range. Pathogens can transmit (either through direct transmission or via vector borne transmission) from infected individuals to susceptible individuals (arrows indicate directions). In plant disease systems (B),lowcompetence hosts can act as physical barriers for pathogen transmission (dashed arrows). While in animal disease systems (D), the barrier effect of low-competence hosts might be ineffective."
Table 2
Expected overall effects of species richness, phylogenetic richness and phylogenetic divergence on the disease risk and the hypothesized underlying mechanisms"
多样性指标 diversity index | 潜在疾病 丰富度 potential diseases richness | 单一疾病 风险 risk of single disease | 疾病负担 disease burden |
---|---|---|---|
物种丰富度 species richness | + 多样性产生 多样性假说 | +身份效应 或 -稀释效应 | +/- |
系统发育丰富度 phylogenetic richness | + 多样性产生 多样性假说 | + 身份效应 | + |
系统发育分化度 phylogenetic divergence | / | - | - |
[1] |
GIBB R, REDDING D W, CHIN K Q, et al. Zoonotic host diversity increases in human-dominated ecosystems[J]. Nature, 2020,584(7821):398-402. DOI: 10.1038/s41586-020-2562-8.
pmid: 32759999 |
[2] | JONES K E, PATEL N G, LEVY M A, et al. Global trends in emerging infectious diseases[J]. Nature, 2008,451(7181):990-993. DOI: 10.1038/nature06536. |
[3] | MORENS D M, FOLKERS G K, FAUCI A S. The challenge of emerging and re-emerging infectious diseases[J]. Nature, 2004,430(6996):242-249. DOI: 10.1038/nature02759. |
[4] |
DASZAK P. Emerging infectious diseases of wildlife:threats to biodiversity and human health[J]. Science, 2000,287(5452):443-449. DOI: 10.1126/science.287.5452.443.
pmid: 10642539 |
[5] | ALLEN T, MURRAY K A, ZAMBRANA-TORRELIO C, et al. Global hotspots and correlates of emerging zoonotic diseases[J]. Nat Commun, 2017,8:1124. DOI: 10.1038/s41467-017-00923-8. |
[6] | TIAN H Y, LIU Y H, LI Y D, et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020,368(6491):638-642. DOI: 10.1126/science.abb6105. |
[7] |
OLSEN B, MUNSTER V J, WALLENSTEN A, et al. Global patterns of influenza: a virus in wild birds[J]. Science, 2006,312(5772):384-388. DOI: 10.1126/science.1122438.
pmid: 16627734 |
[8] |
VERHAGEN J H, VAN DER JEUGD H P, NOLET B A, et al.Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands,2014,within the context of global flyways[J]. Euro Surveill, 2015,20(12) DOI: 10.2807/1560-7917.es2015.20.12.21069.
doi: 10.2807/1560-7917.es2015.20.12.21075 pmid: 25846487 |
[9] | CABLE J, BARBER I, BOAG B, et al. Global change,parasite transmission and disease control:lessons from ecology[J]. Phil Trans R Soc B, 2017,372(1719):20160088. DOI: 10.1098/rstb.2016.0088. |
[10] | 杨坤, 周晓农. 景观流行病学研究现状及其进展[J]. 中华流行病学杂志, 2008,29(2):198-201. |
YANG K, ZHOU X N. The study on status and development of landscape epidemiology[J]. Chin J Epidemiol, 2008,29(2):198-201. DOI: 10.3321/j.issn:0254-6450.2008.02.022. | |
[11] |
FRAINER A, MCKIE B G, AMUNDSEN P A, et al. Parasitism and the biodiversity-functioning relationship[J]. Trends Ecol Evol, 2018,33(4):260-268. DOI: 10.1016/j.tree.2018.01.011.
doi: 10.1016/j.tree.2018.01.011 pmid: 29456188 |
[12] |
JOHNSON P T, DE ROODE J C, FENTON A.Why infectious disease research needs community ecology[J]. Science, 2015,349(6252):1259504. DOI: 10.1126/science.1259504.
pmid: 26339035 |
GIBB R, REDDING D W, CHIN K Q, et al. Zoonotic host diversity increases in human-dominated ecosystems[J]. Nature, 2020,584(7821):398-402. DOI: 10.1038/s41586-020-2562-8. | |
[13] | ESTRADA-PEÑA A, OSTFELD R S, PETERSON A T, et al. Effects of environmental change on zoonotic disease risk:an ecological primer[J]. Trends Parasitol, 2014,30(4):205-214. DOI: 10.1016/j.pt.2014.02.003. |
[14] | 田怀玉, 童世庐. 生态传染病模型研究:人兽共患病传播与环境影响因素[J]. 中华预防医学杂志, 2017,51(1):8-11. |
TIAN H Y, TONG S L. Recent advance in eco-epidemiological model:zoonotic disease transmission and environmental factors[J]. 2017,51(1):8-11. DOI: 10.3760/cma.j.issn.0253-9624.2017.01.003. | |
[15] |
OSTFELD R S, GLASS G E, KEESING F. Spatial epidemiology:an emerging (or re-emerging) discipline[J]. Trends Ecol Evol, 2005,20(6):328-336. DOI: 10.1016/j.tree.2005.03.009.
doi: 10.1016/j.tree.2005.03.009 pmid: 16701389 |
[16] | 王然, 乔慧捷. 生态位模型在流行病学中的应用[J]. 生物多样性, 2020,28(5):579-586. |
WANG R, QIAO H J. Matters needing attention about invoking ecological niche model in epidemiology[J]. Biodivers Sci, 2020,28(5):579-586. DOI: 10.17520/biods.2020155. | |
[17] |
JENKINS E J, SIMON A, BACHAND N, et al. Wildlife parasites in a “One Health World”[J]. Trends Parasitol, 2015,31(5):174-180. DOI: 10.1016/j.pt.2015.01.002.
doi: 10.1016/j.pt.2015.01.002 |
[18] |
KRUSE H, KIRKEMO A M, HANDELAND K. Wildlife as source of zoonotic infections[J]. Emerg Infect Dis, 2004,10(12):2067-2072. DOI: 10.3201/eid1012.040707.
doi: 10.3201/eid1012.040707 pmid: 15663840 |
[19] | 李彬彬. 推进生物多样性保护与人类健康的共同发展:One Health[J]. 生物多样性, 2020,28(5):596-605. |
LI B B. Creating synergy between biodiversity conservation and human health-One Health[J]. Biodivers Sci, 2020,28(5):596-605. DOI: 10.17520/biods.2020133. | |
[20] |
JOHNSON P T J, OSTFELD R S, KEESING F. Frontiers in research on biodiversity and disease[J]. Ecol Lett, 2015,18(10):1119-1133. DOI: 10.1111/ele.12479.
doi: 10.1111/ele.12479 pmid: 26261049 |
[21] |
DOWNS C J, SCHOENLE L A, HAN B A, et al. Scaling of host competence[J]. Trends Parasitol, 2019,35(3):182-192. DOI: 10.1016/j.pt.2018.12.002.
doi: 10.1016/j.pt.2018.12.002 pmid: 30709569 |
[22] |
KIRK D, SHEA D, START D. Host traits and competitive ability jointly structure disease dynamics and community assembly[J]. J Anim Ecol, 2019,88(9):1379-1391. DOI: 10.1111/1365-2656.13028.
doi: 10.1111/1365-2656.13028 pmid: 31120552 |
[23] |
SERVICE M W. Agricultural development and arthropod-borne diseases: a review[J]. Rev Saude Publica, 1991,25(3):165-178. DOI: 10.1590/s0034-89101991000300002.
doi: 10.1590/s0034-89101991000300002 pmid: 1687929 |
[24] | OSTFELD R S, KEESING F. Effects of host diversity on infectious disease[J]. Annu Rev Ecol Evol Syst, 2012,43(1):157-182. DOI: 10.1146/annurev-ecolsys-102710-145022. |
[25] |
HUANG Z Y X, VAN LANGEVELDE F, ESTRADA-PEÑA A, et al. The diversity-disease relationship:evidence for and criticisms of the dilution effect[J]. Parasitology, 2016,143(9):1075-1086. DOI: 10.1017/s0031182016000536.
doi: 10.1017/S0031182016000536 pmid: 27041655 |
[26] |
KEESING F, HOLT R D, OSTFELD R S. Effects of species diversity on disease risk[J]. Ecol Lett, 2006,9(4):485-498. DOI: 10.1111/j.1461-0248.2006.00885.x.
doi: 10.1111/j.1461-0248.2006.00885.x pmid: 16623733 |
[27] |
HALLIDAY F W, ROHR J R, LAINE A L.Biodiversity loss underlies the dilution effect of biodiversity[J].Ecol Lett, 2020: Online. DOI: 10.1111/ele.13590.
doi: 10.1111/ele.13628 pmid: 33103837 |
[28] |
ROHR J R, CIVITELLO D J, HALLIDAY F W, et al. Towards common ground in the biodiversity-disease debate[J]. Nat Ecol Evol, 2020,4(1):24-33. DOI: 10.1038/s41559-019-1060-6.
doi: 10.1038/s41559-019-1060-6 pmid: 31819238 |
[29] |
HALLIDAY F W, ROHR J R. Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps[J]. Nat Commun, 2019,10:5032. DOI: 10.1038/s41467-019-13049-w.
doi: 10.1038/s41467-019-13049-w pmid: 31695043 |
[30] | OSTFELD R S, KEESING F. Biodiversity series: the function of biodiversity in the ecology of vector-borne zoonotic diseases[J]. Can J Zool, 2000,78(12):2061-2078. DOI: 10.1139/z00-172. |
[31] |
LOGIUDICE K, OSTFELD R S, SCHMIDT K A, et al. The ecology of infectious disease:effects of host diversity and community composition on Lyme disease risk[J]. Proc Natl Acad Sci USA, 2003,100(2):567-571. DOI: 10.1073/pnas.0233733100.
doi: 10.1073/pnas.0233733100 pmid: 12525705 |
[32] | ALLAN B F, KEESING F, OSTFELD R S. Effect of forest fragmentation on Lyme disease risk[J]. Conserv Biol, 2003,17(1):267-272. DOI: 10.1046/j.1523-1739.2003.01260.x. |
[33] |
KEESING F, BELDEN L K, DASZAK P, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases[J]. Nature, 2010,468(7324):647-652. DOI: 10.1038/nature09575.
doi: 10.1038/nature09575 pmid: 21124449 |
[34] |
ALLAN B F, LANGERHANS R B, RYBERG W A, et al. Ecological correlates of risk and incidence of West Nile virus in the United States[J]. Oecologia, 2009,158(4):699-708. DOI: 10.1007/s00442-008-1169-9.
doi: 10.1007/s00442-008-1169-9 pmid: 18941794 |
[35] |
SWADDLE J P, CALOS S E. Increased avian diversity is associated with lower incidence of human West Nile infection:observation of the dilution effect[J]. PLoS One, 2008,3(6):e2488. DOI: 10.1371/journal.pone.0002488.
doi: 10.1371/journal.pone.0002488 pmid: 18575599 |
[36] |
CLAY C A, LEHMER E M, JEOR S S, et al. Sin nombre virus and rodent species diversity: a test of the dilution and amplification hypotheses[J]. PLoS One, 2009,4(7):e6467. DOI: 10.1371/journal.pone.0006467.
doi: 10.1371/journal.pone.0006467 pmid: 19649283 |
[37] |
SUZÁN G, MARCÉ E, GIERMAKOWSKI J T, et al. Experimental evidence for reduced rodent diversity causing increased Hantavirus prevalence[J]. PLoS One, 2009,4(5):e5461. DOI: 10.1371/journal.pone.0005461.
doi: 10.1371/journal.pone.0005461 pmid: 19421313 |
[38] |
JOHNSON P T, LUND P J, HARTSON R B, et al. Community diversity reduces Schistosoma mansoni transmission,host pathology and human infection risk[J]. Proc Biol Sci, 2009,276(1662):1657-1663. DOI: 10.1098/rspb.2008.1718.
doi: 10.1098/rspb.2008.1718 pmid: 19203926 |
[39] |
JOHNSON P T J, PRESTON D L, HOVERMAN J T, et al. Species diversity reduces parasite infection through cross-generational effects on host abundance[J]. Ecology, 2012,93(1):56-64. DOI: 10.1890/11-0636.1.
doi: 10.1890/11-0636.1 pmid: 22486087 |
[40] |
JOHNSON P T J, PRESTON D L, HOVERMAN J T, et al. Host and parasite diversity jointly control disease risk in complex communities[J]. PNAS, 2013,110(42):16916-16921. DOI: 10.1073/pnas.1310557110.
doi: 10.1073/pnas.1310557110 pmid: 24082092 |
[41] |
WOOD C L, MCINTURFF A, YOUNG H S, et al. Human infectious disease burdens decrease with urbanization but not with biodiversity[J]. Phil Trans R Soc B, 2017,372(1722):20160122. DOI: 10.1098/rstb.2016.0122.
doi: 10.1098/rstb.2016.0122 pmid: 28438911 |
[42] |
RANDOLPH S E, DOBSON A D. Pangloss revisited:a critique of the dilution effect and the biodiversity-buffers-disease paradigm[J]. Parasitology, 2012,139(7):847-863. DOI: 10.1017/s0031182012000200.
doi: 10.1017/S0031182012000200 pmid: 22336330 |
[43] |
HUANG Z Y X, YU Y, VAN LANGEVELDE F, et al. Does the dilution effect generally occur in animal diseases?[J]. Parasitology, 2017,144(6):823-826. DOI: 10.1017/s0031182016002572.
doi: 10.1017/S0031182016002572 pmid: 28073392 |
[44] |
CIVITELLO D J, COHEN J, FATIMA H, et al. Biodiversity inhibits parasites: broad evidence for the dilution effect[J]. PNAS, 2015,112(28):8667-8671. DOI: 10.1073/pnas.1506279112.
doi: 10.1073/pnas.1506279112 pmid: 26069208 |
[45] |
CLAY C A, LEHMER E M, ST JEOR S, et al. Testing mechanisms of the dilution effect:deer mice encounter rates,sin nombre virus prevalence and species diversity[J]. EcoHealth, 2009,6(2):250-259. DOI: 10.1007/s10393-009-0240-2.
pmid: 19495881 |
[46] |
SALKELD D J, PADGETT K A, JONES J H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic[J]. Ecol Lett, 2013,16(5):679-686. DOI: 10.1111/ele.12101.
doi: 10.1111/ele.12101 pmid: 23489376 |
[47] |
WOOD C L, LAFFERTY K D, DELEO G, et al. Does biodiversity protect humans against infectious disease?[J]. Ecology, 2014,95(4):817-832. DOI: 10.1890/13-1041.1.
doi: 10.1890/13-1041.1 pmid: 24933803 |
[48] |
YOUNG H, GRIFFIN R H, WOOD C L, et al. Does habitat disturbance increase infectious disease risk for Primates?[J]. Ecol Lett, 2013,16(5):656-663. DOI: 10.1111/ele.12094.
doi: 10.1111/ele.12094 pmid: 23448139 |
[49] | LIU X, CHEN L F, LIU M, et al. Dilution effect of plant diversity on infectious diseases:latitudinal trend and biological context dependence[J]. Oikos, 2020,129(4):457-465. DOI: 10.1111/oik.07027. |
[50] |
COHEN J M, CIVITELLO D J, BRACE A J, et al. Spatial scale modulates the strength of ecological processes driving disease distributions[J]. PNAS, 2016,113(24):E3359-E3364. DOI: 10.1073/pnas.1521657113.
doi: 10.1073/pnas.1521657113 pmid: 27247398 |
[51] |
MAGNUSSON M, FISCHHOFF I R, ECKE F, et al. Effect of spatial scale and latitude on diversity-disease relationships[J] . Ecology, 2020,101(3):e02955. DOI: 10.1002/ecy.2955.
doi: 10.1002/ecy.2955 pmid: 31840238 |
[52] | DOBSON A. Population dynamics of pathogens with multiple host species[J]. Am Nat, 2004,164(S5):S64-S78. DOI: 10.1086/424681. |
[53] |
RUDOLF V H, ANTONOVICS J. Species coexistence and pathogens with frequency-dependent transmission[J]. Am Nat, 2005,166(1):112-118. DOI: 10.1086/430674.
doi: 10.1086/430674 pmid: 15937794 |
[54] | ROY M, PASCUAL M. On representing network heterogeneities in the incidence rate of simple epidemic models[J]. Ecol Complex, 2006,3(1):80-90. DOI: 10.1016/j.ecocom.2005.09.001. |
[55] |
HARDSTAFF J L, MARION G, HUTCHINGS M R, et al. Evaluating the tuberculosis hazard posed to cattle from wildlife across Europe[J]. Res Vet Sci, 2014,97:S86-S93. DOI: 10.1016/j.rvsc.2013.12.002.
doi: 10.1016/j.rvsc.2013.12.002 pmid: 24423727 |
[56] |
HUANG Z Y X, DE BOER W F, VAN LANGEVELDE F, et al. Dilution effect in bovine tuberculosis:risk factors for regional disease occurrence in Africa[J]. Proc R Soc B, 2013,280(1765):20130624. DOI: 10.1098/rspb.2013.0624.
doi: 10.1098/rspb.2013.0624 pmid: 23804614 |
[57] |
HUANG Z Y, XU C, VAN LANGEVELDE F, et al. Dilution effect and identity effect by wildlife in the persistence and recurrence of bovine tuberculosis[J]. Parasitology, 2014,141(7):981-987. DOI: 10.1017/s0031182013002357.
doi: 10.1017/S0031182013002357 pmid: 24612552 |
[58] |
MOORE S M, BORER E T. The influence of host diversity and composition on epidemiological patterns at multiple spatial scales[J]. Ecology, 2012,93(5):1095-1105. DOI: 10.1890/11-0086.1.
doi: 10.1890/11-0086.1 pmid: 22764495 |
[59] |
PLANTEGENEST M, LE MAY C, FABRE F. Landscape epidemiology of plant diseases[J]. J R Soc Interface, 2007,4(16):963-972. DOI: 10.1098/rsif.2007.1114.
doi: 10.1098/rsif.2007.1114 pmid: 17650471 |
[60] |
WOOD C L, LAFFERTY K D. Biodiversity and disease:a synjournal of ecological perspectives on Lyme disease transmission[J]. Trends Ecol Evol, 2013,28(4):239-247. DOI: 10.1016/j.tree.2012.10.011.
doi: 10.1016/j.tree.2012.10.011 pmid: 23182683 |
[61] | SAUL A. Zooprophylaxis or zoopotentiation:the outcome of introducing animals on vector transmission is highly dependent on the mosquito mortality while searching[J]. Malar J, 2003,2(1):1-18. DOI: 10.1186/1475-2875-2-32. |
[62] |
DOBSON A, CATTADORI I, HOLT R D, et al. Sacred cows and sympathetic squirrels:the importance of biological diversity to human health[J]. PLoS Med, 2006,3(6):e231. DOI: 10.1371/journal.pmed.0030231.
doi: 10.1371/journal.pmed.0030231 pmid: 16729846 |
[63] | SCHMIDT K A, OSTFELD R S. Biodiversity and the dilution effect in disease ecology[J]. Ecology, 2001,82(3):609-619. DOI: 10.1890/0012-9658(2001)082[0609:BATDEI]2.0.CO;2. |
[64] | VANDERWAAL K L, EZENWA V O. Heterogeneity in pathogen transmission:mechanisms and methodology[J]. Funct Ecol, 2016,30(10):1606-1622. DOI: 10.1111/1365-2435.12645. |
[65] |
CARDILLO M, MACE G M, JONES K E, et al. Multiple causes of high extinction risk in large mammal species[J]. Science, 2005,309(5738):1239-1241. DOI: 10.1126/science.1116030.
doi: 10.1126/science.1116030 pmid: 16037416 |
[66] |
HUANG Z Y, DE BOER W F, VAN LANGEVELDE F, et al.Species’ life-history traits explain interspecific variation in reservoir competence:a possible mechanism underlying the dilution effect[J]. PLoS One, 2013,8(1):e54341. DOI: 10.1371/journal.pone.0054341.
pmid: 23365661 |
[67] |
JOSEPH M B, MIHALJEVIC J R, ORLOFSKE S A, et al. Does life history mediate changing disease risk when communities disassemble?[J]. Ecol Lett, 2013,16(11):1405-1412. DOI: 10.1111/ele.12180.
doi: 10.1111/ele.12180 |
[68] |
HAN B A, SCHMIDT J P, BOWDEN S E, et al. Rodent reservoirs of future zoonotic diseases[J]. PNAS, 2015,112(22):7039-7044. DOI: 10.1073/pnas.1501598112.
doi: 10.1073/pnas.1501598112 pmid: 26038558 |
[69] |
JOHNSON P T J, ROHR J R, HOVERMAN J T, et al. Living fast and dying of infection:host life history drives interspecific variation in infection and disease risk[J]. Ecol Lett, 2012,15(3):235-242. DOI: 10.1111/j.1461-0248.2011.01730.x.
doi: 10.1111/j.1461-0248.2011.01730.x |
[70] |
GOTTDENKER N L, CHAVES L F, CALZADA J E, et al. Host life history strategy,species diversity,and habitat influence Trypanosoma cruzi vector infection in Changing landscapes[J]. PLoS Negl Trop Dis, 2012,6(11):e1884. DOI: 10.1371/journal.pntd.0001884.
doi: 10.1371/journal.pntd.0001884 pmid: 23166846 |
[71] |
HILY J M, GARCÍA A, MORENO A, et al.The relationship between host lifespan and pathogen reservoir potential:an analysis in the system Arabidopsis thaliana-cucumber mosaic virus[J]. PLoS Pathog, 2014,10(11):e1004492. DOI: 10.1371/journal.ppat.1004492.
doi: 10.1371/journal.ppat.1004492 pmid: 25375140 |
[72] | LAJEUNESSE M J, FORBES M R. Host range and local parasite adaptation[J]. Proc R Soc Lond B, 2002,269(1492):703-710. DOI: 10.1098/rspb.2001.1943. |
[73] |
OSTFELD R S, LEVI T, JOLLES A E, et al. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens[J]. PLoS One, 2014,9(9):e107387. DOI: 10.1371/journal.pone.0107387.
doi: 10.1371/journal.pone.0107387 pmid: 25232722 |
[74] |
JOHNSON P T, PRESTON D L, HOVERMAN J T, et al. Biodiversity decreases disease through predictable changes in host community competence[J]. Nature, 2013,494(7436):230-233. DOI: 10.1038/nature11883.
doi: 10.1038/nature11883 pmid: 23407539 |
[75] |
LACROIX C, JOLLES A, SEABLOOM E W, et al. Non-random biodiversity loss underlies predictable increases in viral disease prevalence[J]. J R Soc Interface, 2014,11(92):20130947. DOI: 10.1098/rsif.2013.0947.
doi: 10.1098/rsif.2013.0947 pmid: 24352672 |
[76] | HANTSCH L, BRAUN U, SCHERER-LORENZEN M, et al. Species richness and species identity effects on occurrence of foliar fungal pathogens in a tree diversity experiment[J]. Ecosphere, 2013,4(7):1-12. DOI: 10.1890/ES13-00103.1. |
[77] | LOREAU M. Separating sampling and other effects in biodiversity experiments[J]. Oikos, 1998,82(3):600. DOI: 10.2307/3546381. |
[78] |
BECKER C G, RODRIGUEZ D, TOLEDO L F, et al. Partitioning the net effect of host diversity on an emerging amphibian pathogen[J]. Proc R Soc B, 2014,281(1795):20141796. DOI: 10.1098/rspb.2014.1796.
doi: 10.1098/rspb.2014.1796 pmid: 25297867 |
[79] | WEBB C O, ACKERLY D D, MCPEEK M A, et al. Phylogenies and community ecology[J]. Annu Rev Ecol Syst, 2002,33(1):475-505. DOI: 10.1146/annurev.ecolsys.33.010802.150448. |
[80] |
FOUNTAIN-JONES N M, PEARSE W D, ESCOBAR L E, et al. Towards an eco-phylogenetic framework for infectious disease ecology[J]. Biol Rev, 2018,93(2):950-970. DOI: 10.1111/brv.12380.
doi: 10.1111/brv.12380 pmid: 29114986 |
[81] | LONGDON B, HADFIELD J D, WEBSTER C L, et al. Host phylogeny determines viral persistence and replication in novel hosts[J]. PLoS Pathog, 2011,7(9):e1002260. DOI: 10.1371/journal.ppat.1002260. |
[82] |
PEDERSEN A B, DAVIES T J. Cross-species pathogen transmission and disease emergence in Primates[J]. EcoHealth, 2009,6(4):496-508. DOI: 10.1007/s10393-010-0284-3.
doi: 10.1007/s10393-010-0284-3 pmid: 20232229 |
[83] |
STREICKER D G, TURMELLE A S, VONHOF M J, et al. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats[J]. Science, 2010,329(5992):676-679. DOI: 10.1126/science.1188836.
doi: 10.1126/science.1188836 pmid: 20689015 |
[84] |
HUANG S, BININDA-EMONDS O R, STEPHENS P R, et al.Phylogenetically related and ecologically similar carnivores harbour similar parasite assemblages[J]. J Anim Ecol, 2014,83(3):671-680. DOI: 10.1111/1365-2656.12160.
doi: 10.1111/1365-2656.12160 pmid: 24289314 |
[85] |
GILBERT G S, WEBB C O. Phylogenetic signal in plant pathogen-host range[J]. PNAS, 2007,104(12):4979-4983. DOI: 10.1073/pnas.0607968104.
doi: 10.1073/pnas.0607968104 pmid: 17360396 |
[86] |
OLIVAL K J, HOSSEINI P R, ZAMBRANA-TORRELIO C, et al. Host and viral traits predict zoonotic spillover from mammals[J]. Nature, 2017,546(7660):646-650. DOI: 10.1038/nature22975.
doi: 10.1038/nature22975 pmid: 28636590 |
[87] |
TUCKER C M, CADOTTE M W, CARVALHO S B, et al. a guide to phylogenetic metrics for conservation,community ecology and macroecology[J]. Biol Rev, 2017,92(2):698-715. DOI: 10.1111/brv.12252.
doi: 10.1111/brv.12252 pmid: 26785932 |
[88] | SWENSON N G. Functional and phylogenetic ecology in R[M/OL]. [2014-01-01].http:www.springer.com.DOI: 10.1007/978-1-4614-9542-0. |
[89] | WANG Y X G, MATSON K D, PRINS H H T, et al. Phylogenetic structure of wildlife assemblages shapes patterns of infectious livestock diseases in Africa[J]. Funct Ecol, 2019,33(7):1332-1341. DOI: 10.1111/1365-2435.13311. |
[90] |
LIU X, LYU S M, ZHOU S R, et al. Warming and fertilization alter the dilution effect of host diversity on disease severity[J]. Ecology, 2016,97(7):1680-1689. DOI: 10.1890/15-1784.1.
doi: 10.1890/15-1784.1 pmid: 27859159 |
[91] |
PARKER I M, SAUNDERS M, BONTRAGER M, et al. Phylogenetic structure and host abundance drive disease pressure in communities[J]. Nature, 2015,520(7548):542-544. DOI: 10.1038/nature14372.
doi: 10.1038/nature14372 pmid: 25903634 |
[92] | HUANG Z Y X, XU C, VAN LANGEVELDE F, et al. Contrasting effects of host species and phylogenetic diversity on the occurrence of HPAI H5N1 in European wild birds[J]. J Animal Ecol, 2019,88(7):1044-1053. DOI: 10.1111/1365-2656.12997. |
[93] |
ESSER H J, HERRE E A, BLÜTHGEN N, et al.Host specificity in a diverse Neotropical tick community:an assessment using quantitative network analysis and host phylogeny[J]. Parasit Vectors, 2016,9(1):372. DOI: 10.1186/s13071-016-1655-6.
doi: 10.1186/s13071-016-1655-6 pmid: 27357506 |
[94] |
KILPATRICK A M, SALKELD D J, TITCOMB G, et al. Conservation of biodiversity as a strategy for improving human health and well-being[J]. Phil Trans R Soc B, 2017,372(1722):20160131. DOI: 10.1098/rstb.2016.0131.
doi: 10.1098/rstb.2016.0131 pmid: 28438920 |
[95] |
HECHINGER R F, LAFFERTY K D. Host diversity begets parasite diversity:bird final hosts and Trematodes in snail intermediate hosts[J]. Proc R Soc B, 2005,272(1567):1059-1066. DOI: 10.1098/rspb.2005.3070.
doi: 10.1098/rspb.2005.3070 pmid: 16024365 |
[96] |
ROTTSTOCK T, JOSHI J, KUMMER V, et al. Higher plant diversity promotes higher diversity of fungal pathogens,while it decreases pathogen infection per plant[J]. Ecology, 2014,95(7):1907-1917. DOI: 10.1890/13-2317.1.
doi: 10.1890/13-2317.1 pmid: 25163123 |
[97] |
MORAND S, JITTAPALAPONG S, SUPUTTAMONGKOL Y, et al. Infectious diseases and their outbreaks in Asia-Pacific:biodiversity and its regulation loss matter[J]. PLoS One, 2014,9(2):e90032. DOI: 10.1371/journal.pone.0090032.
doi: 10.1371/journal.pone.0090032 pmid: 24587201 |
[98] | FAHRIG L. Effects of habitat fragmentation on biodiversity[J]. Annu Rev Ecol Evol Syst, 2003,34(1):487-515. DOI: 10.1146/annurev.ecolsys.34.011802.132419. |
[99] |
LOGIUDICE K, DUERR S T K, NEWHOUSE M J, et al.Impact of host community composition on Lyme disease risk[J]. Ecology, 89(10):2841-2849. DOI: 10.1890/07-1047.1.
doi: 10.1890/07-1047.1 pmid: 18959321 |
[100] |
HUANG Z Y X, VAN LANGEVELDE F, PRINS H H T, et al. Dilution versus facilitation: impact of connectivity on disease risk in metapopulations[J]. J Theor Biol, 2015,376:66-73. DOI: 10.1016/j.jtbi.2015.04.005.
doi: 10.1016/j.jtbi.2015.04.005 pmid: 25882748 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||