JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3): 183-192.doi: 10.12302/j.issn.1000-2006.202005003
Previous Articles Next Articles
ZHANG Shuifeng1,2(), ZHANG Jinchi1,*(), ZHUANG Jiayao1, WANG Xinmeng2, ZHANG Siyu2
Received:
2020-05-13
Revised:
2020-08-24
Online:
2021-05-30
Published:
2021-05-31
Contact:
ZHANG Jinchi
E-mail:270847034@qq.com;zhang8811@njfu.edu.cn
CLC Number:
ZHANG Shuifeng, ZHANG Jinchi, ZHUANG Jiayao, WANG Xinmeng, ZHANG Siyu. Parameters sensitivity and applicability evaluations of AnnAGNPS model in a small watershed of the Yangtze River Delta[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 183-192.
Table 1
CSA and MSCL values in the references"
研究区 study area | 面积/ km2 area | 临界源区 面积/hm2 CSA | 最小源区 沟道 长度/m MSCL | 水文响应 单元数量 cells number | 河段 数量 reaches number | 文献 references |
---|---|---|---|---|---|---|
中田河流域 | 47.85 | 6 | 50 | 897 | 377 | [22] |
山美水库流域 | 1 023.00 | 50 | 150 | 2 448 | 990 | [23] |
桃溪子流域 | 394.00 | 50 | 150 | 2 664 | 1 105 | [23] |
灞河流域 | 2 581.00 | 100 | 100 | 1 965 | 791 | [24] |
罗李村流域 | 743.80 | 100 | 70 | 1 030 | 420 | [25] |
岔口小流域 | 131.91 | 5 | 100 | 2 722 | 1 097 | [33] |
Red Rock Creek watershed 红石溪流域(美国) | 136.00 | 100 | 130 | 169 | - | [38] |
Little River watershed 小河流域(美国) | 333.00 | 50 | 100 | 841 | 342 | [39] |
Table 2
Sensitivity index value and grade of selected parameters"
参数 parameter | 取值 范围 range | 径流深 (等级) runoff depth (rank) | 泥沙 (等级) sediment (rank) | 总氮 (等级) total nitrogen (rank) | 总磷 (等级) total phosphorus (rank) |
---|---|---|---|---|---|
径流曲线数 runoff curve number | [30,100] | 1.286 (Ⅳ) | 0.386 (Ⅲ) | 1.663 (Ⅳ) | 1.144 (Ⅳ) |
土壤可蚀性因子 K factor | [0.0,0.131 7] | 0 (Ⅰ) | 0.808 (Ⅲ) | 0.165 (Ⅱ) | 0.107 (Ⅱ) |
田间持水量 field capacity | [凋萎点, 1.0] | -0.325 (Ⅲ) | -0.031 (Ⅰ) | 0.193 (Ⅱ) | 0.473 (Ⅲ) |
土壤饱和导水率 saturated conductivity | [0.0, 254 000.0] | -0.003 (Ⅰ) | 0 (Ⅰ) | 0.012 (Ⅰ) | 0.026 (Ⅰ) |
凋萎点 wilting point | [0.0,1.0] | 0.201 (Ⅲ) | 0.019 (Ⅰ) | -0.163 (Ⅱ) | -0.064 (Ⅱ) |
土壤有机质含量 organic matter ratio | [0.0,1.0] | 0 (Ⅰ) | 0 (Ⅰ) | 0.812 (Ⅲ) | 0.633 (Ⅲ) |
作物冠层覆盖度 canopy cover | [0.0,1.0] | 0.230 (Ⅲ) | 0.013 (Ⅰ) | -0.012 (Ⅰ) | 0.030 (Ⅰ) |
肥料施用量 application rate | [0.0, 56 000.0] | 0 (Ⅰ) | 0 (Ⅰ) | 0.181 (Ⅱ) | 0.4 (Ⅲ) |
作物管理因子 constant usle C-factor | [0.0,1.0] | 0 (Ⅰ) | 0.808 (Ⅲ) | 0.165 (Ⅱ) | 0.107 (Ⅱ) |
水土保持因子 constant usle P-factor | [0.0,1.0] | 0 (Ⅰ) | 0.790 (Ⅲ) | 0.154 (Ⅱ) | 0.099 (Ⅱ) |
Table 3
Calculation results of base flow BFI in Peiqiao River watershed from 2008 to 2018"
年份 year | β1=0.9 | β2=0.92 | β3=0.935 | β4=0.95 |
---|---|---|---|---|
2008 | 0.412 | 0.400 | 0.379 | 0.361 |
2009 | 0.486 | 0.422 | 0.409 | 0.385 |
2010 | 0.427 | 0.393 | 0.372 | 0.344 |
2011 | 0.438 | 0.393 | 0.386 | 0.352 |
2012 | 0.425 | 0.401 | 0.394 | 0.373 |
2013 | 0.446 | 0.427 | 0.408 | 0.380 |
2014 | 0.465 | 0.417 | 0.405 | 0.392 |
2015 | 0.401 | 0.395 | 0.387 | 0.350 |
2016 | 0.479 | 0.458 | 0.422 | 0.397 |
2017 | 0.413 | 0.396 | 0.382 | 0.364 |
2018 | 0.383 | 0.371 | 0.359 | 0.337 |
2008—2018 | 0.434 | 0.407 | 0.391 | 0.367 |
Table 4
Runoff, sand evaluation,TN and TP calibration and validation at the flood and non-flood season in Peiqiao River watershed"
项目 item | 时间段 time zone | 模拟时期 simulation period | R2 | E | ER/% |
---|---|---|---|---|---|
径流 ruoff | 汛期flood season | 率定期calibration period | 0.846 | 0.813 | -11.581 |
验证期validation period | 0.873 | 0.842 | -11.368 | ||
非汛期non-flood season | 率定期calibration period | 0.825 | 0.765 | -12.174 | |
验证期validation period | 0.859 | 0.823 | -11.632 | ||
泥沙 sediment | 汛期flood season | 率定期calibration period | 0.895 | 0.842 | 10.072 |
验证期validation period | 0.903 | 0.856 | 9.124 | ||
非汛期non-flood season | 率定期calibration period | 0.876 | 0.839 | 10.113 | |
验证期validation period | 0.893 | 0.847 | 9.936 | ||
总氮 total nitragen | 汛期flood season | 率定期calibration period | 0.824 | 0.801 | -9.922 |
验证期validation period | 0.851 | 0.817 | -7.176 | ||
非汛期non-flood season | 率定期calibration period | 0.873 | 0.825 | -7.368 | |
验证期validation period | 0.902 | 0.863 | -6.584 | ||
总磷 total phosphorus | 汛期flood season | 率定期calibration period | 0.817 | 0.785 | -10.120 |
验证期validation period | 0.835 | 0.801 | -9.543 | ||
非汛期non-flood season | 率定期calibration period | 0.810 | 0.775 | -7.915 | |
验证期validation period | 0.857 | 0.839 | -6.437 |
[1] | THORNTON J A. Assessment and control of non-point source pollution of aquatic ecosystem[M]. New York: The Parthenon Publishing Group, 1999. |
[2] |
BAGINSKA B, MILNE-HOME W, CORNISH P S. Modelling nutrient transport in currency creek,NSW with AnnAGNPS and PEST[J]. Environ Model Softw, 2003,18(8/9):801-808.DOI: 10.1016/s1364-8152(03)00079-3.
doi: 10.1016/S1364-8152(03)00079-3 |
[3] |
YUAN Y, LOCKE M A, BINGNER R L. Annualized agricultural non-point source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment[J]. J Soil Water Conserv, 2008,63(6):542-551.DOI: 10.2489/jswc.63.6.542.
doi: 10.2489/jswc.63.6.542 |
[4] | 吴永波. 河岸植被缓冲带减缓农业面源污染研究进展[J]. 南京林业大学学报(自然科学版), 2015,39(3):143-148. |
WU Y B. Research progress on the riparian vegetation buffer strip functions on agricultural nonpoint source pollution reduction[J]. J Nanjing For Univ (Nat Sci Ed), 2015,39(3):143-148.DOI: 10.3969/j.issn.1000-2006.2015.03.028. | |
[5] |
KARKI R, TAGERT M L M, PAZ J O, et al. Application of AnnAGNPS to model an agricultural watershed in east-central Mississippi for the evaluation of an on-farm water storage (OFWS) system[J]. Agric Water Manag, 2017,192:103-114.DOI: 10.1016/j.agwat.2017.07.002.
doi: 10.1016/j.agwat.2017.07.002 |
[6] |
CHAHOR Y, CASALÍ J, GIMÉNEZ R, et al. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)[J]. Agric Water Manag, 2014,134:24-37.DOI: 10.1016/j.agwat.2013.11.014.
doi: 10.1016/j.agwat.2013.11.014 |
[7] |
ZHANG T, YANG Y H, NI J P, et al. Best management practices for agricultural non-point source pollution in a small watershed based on the AnnAGNPS model[J]. Soil Use Manage, 2020,36(1):45-57.DOI: 10.1111/sum.12535.
doi: 10.1111/sum.v36.1 |
[8] | 吴殿鸣, 薛建辉, 吴永波. 生态防护林减轻农田氮素面源污染的研究进展[J]. 南京林业大学学报(自然科学版), 2011,35(6):134-138. |
WU D M, XUE J H, WU Y B. Reviews on effects of ecological shelterbelts on alleviating non-point source pollution of nitrogen[J]. J Nanjing For Univ(Nat Sci Ed), 2011,35(6):134-138.DOI: 101.3969/j/issn.1000-2006.2011.06.028. | |
[9] | 张桂轲. 长江流域上游非点源污染及其对水文过程的响应研究[D]. 北京:清华大学, 2016. |
ZHANG G K. The non-point source pollution and the response to the hydrological processes of upper reaches of the Yangtze River[D]. Beijing:Tsinghua University, 2016. | |
[10] | 周亮, 徐建刚, 孙东琪, 等. 淮河流域农业非点源污染空间特征解析及分类控制[J]. 环境科学, 2013,34(2):547-554. |
ZHOU L, XU J G, SUN D Q, et al. Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River basin[J]. Environ Sci, 2013,34(2):547-554. DOI: 10.13227/j.hjkx.2013.02.020. | |
[11] | 徐勇峰, 陈子鹏, 吴翼, 等. 环洪泽湖区域农业面源污染特征及控制对策[J]. 南京林业大学学报(自然科学版), 2016,40(2):1-8. |
XU Y F, CHEN Z P, WU Y, et al. Advances on agricultural non-point source pollution and the control in regions around Hungtse Lake[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(2):1-8.DOI: 10.3969/j.issn.1000-2006.2016.02.001. | |
[12] | 包鑫, 江燕. 半干旱半湿润地区流域非点源污染负荷模型研究进展[J]. 应用生态学报, 2020,31(2):674-684. |
BAO X, JIANG Y. Research progress on non-point source pollution models for semi-arid and semi-humid watersheds[J]. Chin J Appl Ecol, 2020,31(2):674-684.DOI: 10.13287/j.1001-9332.202002.039. | |
[13] | 国家统计局. 农业生产跃上新台阶现代农业擘画新蓝图——新中国成立70周年经济社会发展成就系列报告之十二[EB/OL].(2019-08-05)[2020-01-30]. http://www.stats.gov.cn/tjsj/zxfb/201908/t20190805_1689117.html. |
[14] | 新华网. 我国化肥使用量占全球三成凸显“肥”之烦恼[EB/OL].(2015-03-17)[2020-02-15]. . |
[15] | 金书秦, 牛坤玉, 韩冬梅. 农业绿色发展路径及其“十四五”取向[J]. 改革, 2020(2):30-39. |
JIN S Q, NIU K Y, HAN D M. The path of agricultural green development and its orientation in the 14th Five-Year Plan period[J]. Reform, 2020(2):30-39. | |
[16] | 农业部. 《到2020年化肥使用量零增长行动方案》基本原则和目标任务[J]. 磷肥与复肥, 2015,30(4):4. |
[17] | 速水佑次郎, 神门善久. 农业经济论:新版[M]. 北京: 中国农业出版社,, 2003. |
YUJIRO H, YOSHIHISE G. Agricultural economics:new edition[M]. Beijing: China Agriculture Press, 2003. | |
[18] | 水利部. 2018中国河流泥沙公报[R/OL]. (2019-06-18)[2020-02-15]. http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/201906/t20190618_1342326.html. |
[19] | 水利部长江水利委员会. 2018年长江流域水土保持公告[R/OL]. (2019-12-02)[2020-02-15]. http://www.cjw.gov.cn/style2013/pdf/web/?file=/UploadFiles/zwzc/2019/12/201912021529412477.pdf. |
[20] | BINGNER R L, THEURER F D. AnnAGNPS technical processes documentation Version 3.2[Z]. Washington DC: USDA-ARS, 2005. |
[21] | 边金云. AnnAGNPS模型在四岭水库小流域非点源控制中的应用研究[D]. 杭州:浙江大学, 2012. |
BIAN J Y. The application of AnnAGNPS model in non-point source pollution control in Siling Reservoir watershed[D]. Hangzhou: Zhejiang University, 2012. | |
[22] | 席庆. 基于AnnAGNPS模型的中田河流域土地利用变化对氮磷营养盐输出影响模拟研究[D]. 南京:南京农业大学, 2014. |
XI Q. Effects of land use change on nutrient export in Zhongtian River watershed based on the AnnAGNPS model[D]. Nanjing:Nanjing Agricultural University, 2014. | |
[23] | 钟科元. AnnAGNPS模型参数空间聚合水文效应研究[D]. 福州:福建师范大学, 2015. |
ZHONG K Y. Hydrological response to parameter spatial aggregation in AnnAGNPS[D]. Fuzhou:Fujian Normal University, 2015. | |
[24] | 章青青. 基于AnnAGNPS模型的灞河流域非点源污染模拟研究[D]. 西安:陕西科技大学, 2018. |
ZHANG Q Q. Simulation and research of non-point source based on AnnAGNPS model in Bahe River of China[D]. Xi’an:Shaanxi University of Science and Technology, 2018. | |
[25] | 吴道祥. 基于AnnAGNPS模型的山美水库流域氮非点源污染控制研究[D]. 福州:福建师范大学, 2017. |
WU D X. Simulation of agricultural non-point source pollution in Shanmei Reservoir watershed base on AnnAGNPS[D]. Fuzhou:Fujian Normal University, 2017. | |
[26] | 高瑞梅. 基于AnnAGNPS模型的罗李村流域水文模拟与评价[D]. 西安:陕西科技大学, 2017. |
GAO R M. Simulation and evaluation of the hydrologic process based on AnnAGNPS model in Luoli-Cun watershed of China[D]. Xi’an:Shaanxi University of Science and Technology, 2017. | |
[27] |
NOSSENT J, BAUWENS W. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling[J]. Water Sci Technol, 2012,65(3):539-549.DOI: 10.2166/wst.2012.884.
doi: 10.2166/wst.2012.884 |
[28] |
DIAZ-RAMIREZ J N, MCANALLY W H, MARTIN J L. Sensitivity of simulating hydrologic processes to gauge and radar rainfall data in subtropical coastal catchments[J]. Water Resour Manage, 2012,26(12):3515-3538.DOI: 10.1007/s11269-012-0088-z.
doi: 10.1007/s11269-012-0088-z |
[29] | 李海东, 林杰, 张金池, 等. 小流域尺度下土壤有机碳和全氮空间变异特征[J]. 南京林业大学学报(自然科学版), 2008,32(4):38-42. |
LI H D, LIN J, ZHANG J C, et al. Spatial variability of soil organic carbon and total nitrogen based on small watershed scale[J]. J Nanjing For Univ (Nat Sci Ed), 2008,32(4):38-42. | |
[30] | 高淳年鉴编纂委员会. 高淳年鉴2018[M]. 南京: 江苏凤凰文艺出版, 2018. |
Gaochun Yearbook Compilation Committee. Gaochun Yearbook:2018[M]. Nanjing: Jiangsu Phoenix Literature and Art Publishing, 2018. | |
[31] |
THORNTON P E, RUNNING S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature,humidity,and precipitation[J]. Agric For Meteorol, 1999,93(4):211-228.DOI: 10.1016/s0168-1923(98)00126-9.
doi: 10.1016/S0168-1923(98)00126-9 |
[32] | 翁笃鸣. 中国辐射气候[M]. 北京: 气象出版社, 1997. |
WENG D M. Radiation climate in China[M]. Beijing: China Meteorological Press, 1997. | |
[33] | 闫胜军. 岔口小流域AnnAGNPS模型验证和坡改梯生态效益分析[D]. 太谷:山西农业大学, 2014. |
YAN S J. Validating the AnnAGNPS model in the Chakou watershed and analyzing the ecological benefit of turning slope land to terrace[D]. Taigu:Shanxi Agricultural University, 2014. | |
[34] | WILLIAMS J R, DYKE P T, JONES C A. Epic: a model for assessing the effects of erosion on soil productivity[M] //Developments in Environmental Modelling. Amsterdam: Elsevier, 1983: 553-572.DOI: 10.1016/b978-0-444-42179-1.50065-1. |
[35] | NRCS. Part 630 Hydrology national engineering handbook,chapter 7: hydrologic soil group[M]. New York:US Department of Agriculture, 2009. |
[36] | 车振海. 试论土壤渗透系数的经验公式和曲线图[J]. 东北水利水电, 1995(9):17-19.DOI: 10.14124/i.cnki.dbslsd22-1097.1995.09.005. |
[37] | 胡连伍, 王学军, 罗定贵, 等. 不同子流域划分对流域径流、泥沙、营养物模拟的影响——丰乐河流域个例研究[J]. 水科学进展, 2007,18(2):235-240. |
HU L W, WANG X J, LUO D G, et al. Effect of sub-watershed partitioning on flow,sediment and nutrient predictions:case study in Fengle River watershed[J]. Adv Water Sci, 2007,18(2):235-240.DOI: 10.14042j.cnki.32.1309.2007.02.014. | |
[38] |
PARAJULI P B, NELSON N O, FREES L D, et al. Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas[J]. Hydrol Process, 2009,23(5):748-763.DOI: 10.1002/hyp.7174.
doi: 10.1002/hyp.v23:5 |
[39] | SUTTLES J B, VELLIDIS G, BOSCH D D, et al. Watershed scale simulation of sediment andnutrient loads in Georgia coastal plain streams using the annualized agnps model[J]. Trans ASAE, 2003,46(5):1325-1335.DOI: 10.13031/2013.15443. |
[40] |
LENHART T, ECKHARDT K, FOHRER N, et al. Comparison of two different approaches of sensitivity analysis[J]. Phys Chem Earth: Parts A/B/C, 2002,27(9/10):645-654.DOI: 10.1016/s1474-7065(02)00049-9.
doi: 10.1016/S1474-7065(02)00049-9 |
[41] | 梁丽营, 高振刚, 刘德财, 等. AnnAGNPS模型在西南岩溶地区奇峰河流域的参数敏感性及适用性分析[J]. 农业环境科学学报, 2020,39(3):590-600. |
LIANG L Y, GAO Z G, LIU D C, et al. Parameter sensitivity and applicability analysis of AnnAGNPS model in Qifeng River watershed in the southwest Karst area of China[J]. J Agro-Environ Sci, 2020,39(3):590-600.DOI: 10.11654/jaes.2019-1111. | |
[42] |
LEGATES D R, MCCABE G J J. Evaluating the use of “Goodness-of-fit” measures in hydrologic and hydroclimatic model validation[J]. Water Resour Res, 1999,35(1):233-241.DOI: 10.1029/1998wr900018.
doi: 10.1029/1998WR900018 |
[43] |
MORIASI D N, ARNOLD J G, LIEW M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Trans ASABE, 2007,50(3):885-900.DOI: 10.13031/2013.23153.
doi: 10.13031/2013.23153 |
[44] |
SALEH A, ARNOLD J G, GASSMAN P W, et al. Application of SWAT for the upper north Bosque River watershed[J]. Trans ASAE, 2000,43(5):1077-1087.DOI: 10.13031/2013.3000.
doi: 10.13031/2013.3000 |
[45] | 张泳华, 刘祖发, 赵铜铁钢, 等. 东江流域基流变化特征及影响因素[J]. 水资源保护, 2020,36(4):75-81. |
ZHANG Y H, LIU Z F, ZHAO T T G, et al. Variation characteristics and influencing factors of base flow in Dongjiang River basin[J]. Water Resour Prot, 2020,36(4):75-81.DOI: 10.3880/j.issn.1004-6933.2020.04.012. | |
[46] | NATHAN R J, MCMAHON T A. Evaluation of automated techniques for base flow and recession analyses[J]. Water Resour Res, 1990,26(7):1465-1473.DOI: 10.1029/wr026i007p01465. |
[47] |
李瑞, 张士锋. 两种自动基流分割方法在干旱半干旱地区的对比研究[J]. 地理科学进展, 2017,36(7):864-872.
doi: 10.18306/dlkxjz.2017.07.008 |
LI R, ZHANG S F. Comparative study on two automatic baseflow separation methods in the arid and semi-arid regions[J]. Prog Geogr, 2017,36(7):864-872.DOI: 10.18306/dlkxjz.2017.07.008. |
[1] | JI Xinyu, YU Yue, ZHANG Sifan, LIU Yuanyuan. The spatio-temporal characteristics of soil erosion in orchards of Dalian City based on the CSLE model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 117-124. |
[2] | YU Yue, ZHAO Lijun, ZHANG Wei, ZHANG Keli, LIU Liang. Spatio-temporal characteristic of soil loss on cropland slopes in different cultivation periods of the Black Soil Region in northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 51-60. |
[3] | LIANG Zi’ao, WANG Xiangfu, WANG Weifeng, YAN Ke, LI Yuanhui, DONG Wenting, WANG Rongnü. Evaluation of soil conservation benefit of the Natural Forest Protection Project in Qinghai Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 181-188. |
[4] | WANG Miaomiao, WANG Enheng, HAN Mingzhao, LI Yongjiang, YU Supu. Organic materials effects on black soil aggregate stability based on the Le Bissonnais method [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 191-199. |
[5] | CHEN Chao, QI Fei, XU Yannan, LI Jiazuo, ZHAO Chuanpu, SU Xinyu. Sampling methods of soil erosion at county scale based on spatial autocorrelation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 177-184. |
[6] | WANG Baoyi, ZHANG Ronghua, JING Shasha, LI Huan, ZHANG Chunqiang, LI Jiazuo, SONG Yuanyuan, LUO Mengqi, ZHANG Guangcan. Effects of rainfall and slope gradient on runoff and sediment yield of subgrade slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 114-120. |
[7] | WANG Jingjing, BI Huaxing1,2,3,4*, SUN Yubo, DUAN Hangqi, PENG Ruidong. Improved model of canopy shading for fruit tree [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 135-140. |
[8] | CHEN Zhuoxin, ZHANG Jinchi. Review of global soil and water conservation in last ten years [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(03): 167-174. |
[9] | HU Tianran, WANG Shuli. Factors affecting gully erosion Wuyuer River watershed of the black soil region [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(01): 113-119. |
[10] | SHU Zhengyue, WANG Jingyan, GONG Wei, LYU Xiangnan, YAN Siyu, CAI Yu, ZHAO Changping. Effects of compound management in citrus orchard on soil micro-aggregate fractal features and soil physical and chemical properties [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(05): 92-98. |
[11] | LU Guihong, YANG Shun 1,2,3, WANG Jun, OU Guoqiang. The mechanism of plant roots reinforcement on soil [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(02): 151-156. |
[12] | HU Gang,SONG Hui, ZHANG Mingli. Application evaluation of the bounding algorithm for breakline in grid DEM [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(01): 140-144. |
[13] | HU Hui, ZHANG Jinchi, ZHU Lijun, BI Feng, YANG Cong. Erosion rule of disturbed sandy soil by artificial simulated rainfall [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(03): 149-152. |
[14] | Wang Jinxin Huang Baolong(Northwest Sci tech University of Agriculture and Forestry\ Yangling\ 712100)\. A Review and Prospect of Runoff Forestry in Arid and Semiarid Regions in the World [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2000, 24(03): 5-10. |
[15] | Wang Jinxin Huang Baolong(Northwest Sci tech University of Agriculture and Forestry\ Yangling\ 712100)\. A Study on Soil Water Conservation Coupling Effects of Water Absorbent and Water Permeable Plastic Film Mulching [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2000, 24(03): 11-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||