JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2): 141-149.doi: 10.12302/j.issn.1000-2006.202201041
Previous Articles Next Articles
DONG Hanyuan(), YU Ying*(
), FAN Wenyi
Received:
2022-01-26
Revised:
2022-04-07
Online:
2023-03-30
Published:
2023-03-28
CLC Number:
DONG Hanyuan, YU Ying, FAN Wenyi. Verification of performance of understory terrain inversion from spaceborne lidar GEDI data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 141-149.
Fig.1
The map of the site of the Cibola forest research area and the location of the Maoer Mountain research area A.Based on the administrative division map version 2.5, July, 2015, downloaded from the GADM website of the global administrative division database. B. Based on the standard map number GS (2020) 4619。"
Table 1
Technical parameters of GEDI"
项目 project | 参数 parameter |
---|---|
发射时间 launch time | 2018年12月5日 |
周期 cycle | 2 a |
探测器 detector | 硅雪崩光电二极管 Si:APD |
脉冲激光波长 pulsed laser wavelength pulsed laser wavelength | 1 064 nm |
轨道倾角和覆盖范围 orbital inclination and coverage | 轨道倾角51.6°;覆盖范围 51.6°N~51.6°S |
轨道 track | 3个激光器共8轨 |
光束 beam | 一束激光分裂为两束覆盖光束;另外两束为全功率,4束光束抖动为8条轨迹 |
功率(全功率/覆盖) power(full power/coverage) | 15 mJ/4.5 mJ |
光斑直径 spot diameter | 25 m |
沿轨间距 distance along the track | 60 m |
跨轨间距 cross-rail spacing | 600 m |
Table 2
Accuracy of terrain elevation inversion by GEDI under different slopes in Cibola forest and Maoer Mountain area"
坡度/(°) slope | MAE/m | R2 | RMSE/m |
---|---|---|---|
0~5 | 0.59/0.97 | 1.00/1.00 | 0.83/1.74 |
≥5~10 | 0.98/1.75 | 1.00/1.00 | 1.42/2.59 |
≥10~15 | 1.40/2.82 | 1.00/1.00 | 1.89/3.78 |
≥15~20 | 1.94/3.64 | 1.00/1.00 | 2.64/4.66 |
≥20~30 | 2.91/4.68 | 1.00/1.00 | 3.77/5.74 |
≥30 | 4.24/5.80 | 1.00/1.00 | 5.37/6.95 |
Table 3
Accuracy of terrain elevation inversion by GEDI under the different vegetation coverage in Cibola forest and Maoer Mountain area"
植被覆盖度/% vegetation coverage | MAE/m | R2 | RMSE/m |
---|---|---|---|
0 | 0.90/— | 1.00/— | 1.19/— |
>0~20 | 1.24/1.15 | 1.00/1.00 | 1.73/1.26 |
>20~40 | 1.25/1.32 | 1.00/1.00 | 1.99/1.46 |
>40~60 | 1.07/1.40 | 1.00/1.00 | 1.64/1.91 |
>60~80 | 1.38/2.17 | 1.00/1.00 | 2.21/3.13 |
>80~90 | 1.57/2.84 | 1.00/1.00 | 2.50/3.91 |
>90~100 | 1.69/3.85 | 1.00/1.00 | 2.60/5.00 |
[1] | 蒋有绪. 世界森林生态系统结构与功能的研究综述[J]. 林业科学研究, 1995, 8(3): 314-321. |
JIANG Y X. On study of structure and function of world forest ecosystem[J]. Forest Res, 1995, 8(3): 314-321. | |
[2] | LONG T F, ZHANG Z M, HE G J, et al. 30 m resolution global annual burned area mapping based on landsat images and google earth engine.[J]. Remote Sens, 2019, 11(5): 489. DOI: 10.3390/rs11050489. |
[3] | 李然, 王成, 苏国中, 等. 星载激光雷达的发展与应用[J]. 科技导报, 2007, 25(14): 58-63. |
LI R, WANG C, SU G Z, et al. Development and applications of Spaceborne LiDAR[J]. Sci & Technol Rev, 2007, 25(14): 58-63. DOI:10.3321/j.issn:1000-7857.2007.14.010. | |
[4] | LEFSKY M A, HARDING D J, KELLER M, et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophys Res Lett, 2005, 32(22): L22S02. DOI: 10.1029/2005gl023971, 2005. |
[5] | DOLAN K, MASEK J G, HUANG C Q, et al. Regional forest growth rates measured by combining ICESat GLAS and Landsat data[J]. J Geophys Res, 2009, 114(G2): G00E05. DOI: 10.1029/2008JG000893, 2009. |
[6] | BALLHORN U, JUBANSKI J, SIEGERT F. ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia[J]. Remote Sens, 2011, 3(9): 1957-1982. DOI: 10.3390/rs3091957. |
[7] | HAYASHI M. Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan[J]. ISPRS J Photogramm and Remote Sens, 2013, 81: 12-18. DOI: 10.1016/j.isprsjprs.2013.04.004. |
[8] | SHUMAN C A, ZWALLY H J, SCHUTZ B. E, et al. ICESat Antarctic elevation data: preliminary precision and accuracy assessment[J]. Geophys Res Lett, 2006, 33(7): L07501. DOI: 10.1029/2005gl025227, 2006. |
[9] | DONGCHEN E, SHEN Q, XU Y, et al. High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica[J]. Sci China Ser D Earth Sci, 2009, 52(5): 714-722. DOI: 10.1007/s11430-009-0055-6. |
[10] | JAWAK S D, LUIS A J. Synergistic use of multitemporal RAMP, ICESat and GPS to construct an accurate DEM of the Larsemann Hills region, Antarctica[J]. Adv Space Res, 2012, 50(4): 457-470. DOI: 10.1016/j.asr.2012.05.004. |
[11] | ABDALATI W, ZWALLY H J, BINDSCHADLER R, et al. The ICESat-2 laser altimetry mission[J]. Proc IEEE, 2010, 98(5): 735-751. DOI: 10.1109/JPROC.2009.2034765. |
[12] | DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography[J]. Sci Remote Sens, 2020, 1(C): 100002. DOI: 10.1016/j.srs.2020.100002. |
[13] | QI W, DUBAYAH R O. Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping[J]. Remote Sens Environ, 2016, 187: 253-266. DOI: 10.1016/j.rse.2016.10.018. |
[14] | ADAM M, URBAZAEV M, DUBOIS C, et al. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: influence of environmental and acquisition parameters[J]. Remote Sens, 2020, 12(23): 3948. DOI: 10.3390/rs12233948. |
[15] | GUERRA H J, PASCUAL A. Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain[J]. For Ecosyst, 2021, 8(1): 14. DOI: 10.1186/s40663-021-00291-2. |
[16] | LIU A, CHENG X, CHEN Z Q. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals[J]. Remote Sens Environ, 2021, 264: 112571. DOI: 10.1016/j.rse.2021.112571. |
[17] | DUBAYAH R, HOFTON M, BLAIR J, et al. GEDI L2A elevation and height metrics data global footprint level V002[R]. NASA EOSDIS Land Processes DAAC, 2021-05-07. DOI: 10.5067/GEDI/GEDI02_A.002. |
[18] | COOK B, CORP L, NELSON R, et al. NASA goddard’s LiDAR, hyperspectral and thermal (G-liht) airborne imager[J]. Remote Sens, 2013, 5(8): 4045-4066. DOI: 10.3390/rs5084045. |
[19] | ROY D P, Wulder M A, Loveland T R, et al. Landsat-8: science and product vision for terrestrial global change research[J]. Remote Sens Environ, 2014, 145: 154-172. DOI: 10.1016/j.rse.2014.02.001. |
[20] | 柳红凯, 徐昌荣, 徐晓. 基于渐进加密三角网机载LIDAR点云滤波改进算法研究[J]. 江西理工大学学报, 2016, 37(3): 50-55, 60. |
LIU H K, XU C R, XU X. Study on improved algorithm of point clouds from airborne scanner based on progressive encryption TIN[J]. J Jiangxi Univ Sci Technol, 2016, 37(3): 50-55, 60. DOI:10.13265/j.cnki.jxlgdxxb.2016.03.009. | |
[21] | 佟斯琴, 包玉海, 张巧凤, 等. 基于像元二分法和强度分析方法的内蒙古植被覆盖度时空变化规律分析[J]. 生态环境学报, 2016, 25(5): 737-743. |
TONG S Q, BAO Y H, ZHANG Q F, et al. Spatial temporal changes of vegetation coverage in Inner Mongolia based on the dimidiate pixel model and intensity analysis[J]. Ecol Environ Sci, 2016, 25(5): 737-743. DOI:10.16258/j.cnki.1674-5906.2016.05.002. |
[1] | KONG Delun, XING Yanqiu. Inversion of tree height from GEDI and ICESat-2 spaceborne lidar [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 175-184. |
[2] | WANG Qisong, GUO Qingxi. The spatial distribution characteristics of light intensity attenuation under natural secondary forests in eastern Jilin Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 101-108. |
[3] | YAO Nan, LIU Guangquan, YAO Shunbo, JIA Lei, LIN Ying, DENG Yuanjie, HOU Mengyang. Analysis of carbon sequestration effect of sloping land conversion program in Loess Plateau from the perspective of slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 180-188. |
[4] | QIU Fengting, GUO Zhifeng, ZHANG Zongke, WEI Xianhu, LI Junjie, LYU Zheng. Spatio-temporal change characteristics of vegetation coverage and its relationship with meteorological factors in the Greater Mekong Subregion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 187-195. |
[5] | GAO Hongjuan, HAN Huiqing, LIU Yue, WANG Tiangui, BAI Yumei, MA Shuliang, CHEN Siying. Changes in landscape disturbance degree of steep slope land use in Guizhou Province from 1995 to 2015 [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 183-190. |
[6] | ZHANG Qiaoyan, TANG Lixia, PAN Lu, CHEN Long. Tensile mechanical properties of roots based on chemical composition [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 186-192. |
[7] | HU Hong, XU Yanli, JU Hongbo, SUN Zhichao. Monitoring and analysis of county-level vegetation cover change in Changting, Fujian based on remote sensing images [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 92-98. |
[8] | WANG Baoyi, ZHANG Ronghua, JING Shasha, LI Huan, ZHANG Chunqiang, LI Jiazuo, SONG Yuanyuan, LUO Mengqi, ZHANG Guangcan. Effects of rainfall and slope gradient on runoff and sediment yield of subgrade slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 114-120. |
[9] | ZHANG Xin, HU Haibo, WU Qiufang, MA Bing. Plant diversity and influencing factors of rocky slope based on net-suspended spray seeding [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(03): 131-138. |
[10] | ZHAO Zhifeng, ZHAO Zhenliang, WANG Haoyue. Study on the undrained bearing capacity of strip footing on slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 211-215. |
[11] | OU Xiaolan, LIU Yanhong. Effect of age, slope aspects and diameter classes on leaf functional traits of Pinus tabulaeformis in Songshan, Beijing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 80-88. |
[12] | YANG Yanrong, ZHANG Zengxin, ZHANG Jinchi, LIU Chunming, ZHUANG Jiayao. A study on the relationship between vegetation coverage and regional climate change in middle and lower reaches of Yangtze River [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(06): 89-95. |
[13] | LU Jianguo, LIANG Tongjiang, KONG Fanhai. Influence of eight species shrubs roots distribution on the ecological slope of highway [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(05): 155-160. |
[14] | ZHAO Zhifeng1, CHEN Yumin2. Study on risk of entire and partial of slope failure [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(02): 121-. |
[15] | YAN Hui1, SU Yinquan1*, ZHU Yuyan2, ZHANG Jingqun1. Distribution characters of fine root of poplar plantation and its relation to properties of soil in the northern slope of Qinling Mountain [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(02): 85-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||