JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2): 49-60.doi: 10.12302/j.issn.1000-2006.202201015
Previous Articles Next Articles
WANG Jianchao1,2(), QIU Wenmin2(
), JIN Kangming2, LU Zhuchou2, HAN Xiaojiao2, ZHUO Renying2, LIU Xiaoguang3,*(
), HE Zhengquan1,*(
)
Received:
2022-01-12
Revised:
2022-06-25
Online:
2023-03-30
Published:
2023-03-28
CLC Number:
WANG Jianchao, QIU Wenmin, JIN Kangming, LU Zhuchou, HAN Xiaojiao, ZHUO Renying, LIU Xiaoguang, HE Zhengquan. Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 49-60.
Table 1
A list of primers"
基因名 gene ID | 序列 sequence | 用途 application |
---|---|---|
SpWRKY42-RT-F | GTTGCCGCAAATGTTTAGCC | 伴矿景天筛选基因 qRT-PCR引物与 内参引物 |
SpWRKY42-RT-R | ATAGCTGCTGTGAAATGCGG | |
SpWRKY72-RT-F | AGGGTTCTTGTTCGGACTGA | |
SpWRKY72-RT-R | AGCGCTTCTCTGAACCTTCT | |
SpWRKY40-RT-F | AGTGTAGCTGCTGAATCCGA | |
SpWRKY40-RT-R | AAAAGTCCAACTCCGGCCTA | |
SpWRKY46-RT-F | GACAACCGGCACTTTTGACT | |
SpWRKY46-RT-R | TAGGCTGTGTTGGAGTTGGT | |
SpWRKY39-RT-F | AGTTTACCGGCGAAGATGGA | |
SpWRKY39-RT-R | TCCAAATCCGACGACTCTGT | |
SpWRKY69-RT-F | CCAAACCATAAAGCCACCGA | |
SpWRKY69-RT-R | TCGCCGGAACTCTTACAACT | |
SpWRKY29-RT-F | TCACGGCGGAGATATCGAAA | |
SpWRKY29-RT-R | AAGAGCATCGATACGTCCGT | |
UBC9-F | TGGCGTCGAAAAGGATTCTGA | |
UBC9-R | CCTTCGGTGGCTTGAATGGATA | |
SpWRKY69-F | ATGGCCGTCGACCTCGT | SpWRKY69全长基因 克隆引物与拟南芥 内参引物 |
SpWRKY69-R | TCACGACGACTCTAGAATGAGT | |
actin-F | GCACCCTGTTCTTCTTACCG | |
actin-R | AACCCTCGTAGATTGGCACA |
Fig.1
A phylogenetic tree of WRKY proteins from Arabidopsis thaliana and Sedum plumbizincicola 77WRKY proteins and 72 Arabidopsis WRKY proteins were compared with MUSCLE, and 1 000 Bootstrap repetitive maximum likelihood (ML) trees were constructed by MEGA-X. Different color branches represent different families."
Fig.3
Expression profiles of SpWRKY genes in three tissues of S. plumbizincicola Transcriptome data (mapping readings per million bases per thousand bases; RPKM) were used to study the expression abundance of SpWRKY gene in roots, stems and leaves. The color from blue to red indicates the expression from low to high."
Fig.7
The synteny analysis of WRKY genes between S. plumbizincicola, A. thaliana and K. fedtschenkoi The rectangles arranged horizontally are chromosomes. Different colors represent the chromosomes of different species. The gray lines indicate the collinear blocks between S. plumbizincicola and other plant genomes, while the blue lines indicate that there is a collinear relationship with SpWRKY genes."
Fig.8
Expression profiles of seven selected SpWRKY genes under Cd stress in roots Under 20 μmol/L Cd stress, the untreated plants were used as control (0 h).UBC9 gene was used as internal reference gene, and their expression level was analyzed by qRT-PCR. The relative expression level of each SpWRKY gene was calculated by 2-ΔΔCt method."
[1] | ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molec Gen Genet, 1994, 244(6):563-571.DOI:10.1007/BF00282746. |
[2] | EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5):199-206.DOI:10.1016/S1360-1385(00)01600-9. |
[3] | WANG L N, ZHU W, FANG L C, et al. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biol, 2014, 14:103.DOI:10.1186/1471-2229-14-103. |
[4] | REN C M, ZHU Q, GAO B D, et al. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling[J]. J Integr Plant Biol, 2008, 50(5):630-637.DOI:10.1111/j.1744-7909.2008.00653.x. |
[5] | GUILLAUMIE S, MZID R, MÉCHIN V, et al. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco[J]. Plant Mol Biol, 2010, 72(1):215.DOI:10.1007/s11103-009-9563-1. |
[6] | JIANG C H, HUANG Z Y, XIE P, et al. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv.tomato DC3000 in Arabidopsis[J]. J Exp Bot, 2015, 67(1):157-174.DOI:10.1093/jxb/erv445. |
[7] | SHENG Y B, YAN X X, HUANG Y, et al. The WRKY transcription factor,WRKY13,activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant Cell Environ, 2019, 42(3):891-903.DOI:10.1111/pce.13457. |
[8] | TAO Z, KOU Y J, LIU H B, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. J Exp Bot, 2011, 62(14):4863-4874.DOI:10.1093/jxb/err144. |
[9] | CHU X Q, WANG C, CHEN X B, et al. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(11):e0143022.DOI:10.1371/journal.pone.0143022. |
[10] | LIU Z Q, FANG H H, PEI Y X, et al. WRKY transcription factors down-regulate the expression of H2S-generating genes,LCD and DES in Arabidopsis thaliana[J]. Sci Bull, 2015, 60(11):995-1001.DOI:10.1007/s11434-015-0787-y. |
[11] | SUN Y D, YU D Q. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J]. Plant Cell Rep, 2015, 34(8):1295-1306.DOI:10.1007/s00299-015-1787-8. |
[12] | 中国生态环境部. 2014全国土壤污染状况调查公报[EB/OL].(2014-04-17)[2021-10-12]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. |
[13] | LANE T W, MOREL F M. A biological function for cadmium in marine diatoms[J]. Proc Natl Acad Sci USA, 2000, 97(9):4627-4631.DOI:10.1073/pnas.090091397. |
[14] | ANDRESEN E, KÜPPER H. Cadmium toxicity in plants[J]. Met Ions Life Sci, 2013, 11:395-413.DOI:10.1007/978-94-007-5179-8_13. |
[15] | RODRÍGUEZ-SERRANO M, ROMERO-PUERTAS M C, PAZMIÑO D M, et al. Cellular response of pea plants to cadmium toxicity:cross talk between reactive oxygen species,nitric oxide,and calcium[J]. Plant Physiol, 2009, 150(1):229-243.DOI:10.1104/pp.108.131524. |
[16] | CHENG S P. Effects of heavy metals on plants and resistance mechanisms.A state-of-the-art report with special reference to literature published in Chinese journals[J]. Environ Sci Pollut Res Int, 2003, 10(4):256-264.DOI:10.1065/espr2002.11.141.2. |
[17] | FAROON O, ASHIZAWA A, WRZAHJ S, et al. Toxicological profile for cadmium[R]. Cleveland: USA. US Department of Energy, 1989. |
[18] | MUSZYNSKA E, HANUS-FAJERSKA E. Why are heavy metal hyperaccumulating plants so amazing?[J]. BioTechnologia, 2015, 4:265-271.DOI:10.5114/bta.2015.57730. |
[19] | LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China:a synthesis of the current state of knowledge[J]. Environ Sci Technol, 2018, 52(21):11980-11994.DOI:10.1021/acs.est.8b01060. |
[20] | PENG J S, WANG Y J, DING G, et al. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola[J]. Mol Plant, 2017, 10(5):771-774.DOI:10.1016/j.molp.2016.12.007. |
[21] | XU D, LU Z C, JIN K M, et al. SPDE:a multi-functional software for sequence processing and data extraction[J]. Bioinformatics, 2021, 37(20):3686-3687.DOI:10.1093/bioinformatics/btab235. |
[22] | EDGAR R C. MUSCLE:Multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32(5):1792-1797.DOI:10.1093/nar/gkh340. |
[23] | WATERHOUSE A M, PROCTER J B, MARTIN D M A, et al. Jalview Version 2: a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9):1189-1191.DOI:10.1093/bioinformatics/btp033. |
[24] | KUMAR S, STECHER G, LI M, et al. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.DOI:10.1093/molbev/msy096. |
[25] | ZHANG H K, GAO S H, LERCHER M J, et al. EvolView,an online tool for visualizing,annotating and managing phylogenetic trees[J]. Nucleic Acids Res, 2012, 40(W1):W569-W572.DOI:10.1093/nar/gks576. |
[26] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI:10.1016/j.molp.2020.06.009. |
[27] | LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.DOI:10.1093/nar/30.1.325. |
[28] | WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293. |
[29] | HAN X J, YIN H F, SONG X X, et al. Integration of small RNAs,degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation[J]. Plant Biotechnol J, 2016, 14(6):1470-1483.DOI:10.1111/pbi.12512. |
[30] | SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.DOI:10.1101/gr.1239303. |
[31] | CLOUGH S J, BENT A F. Floral dip:a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6):735-743.DOI:10.1046/j.1365-313x.1998.00343.x. |
[32] | SAMBROOK J, FRITSCH E, MANIATIS T. Molecular cloning:a laboratory manual[J]. Trends Biotechnol, 1991, 9(1): 213-214. |
[33] | ALVAREZ M E, PENNELL R I, MEIJER P J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J]. Cell, 1998, 92(6):773-784.DOI:10.1016/S0092-8674(00)81405-1. |
[34] | WOHLGEMUTH H, MITTELSTRASS K, KSCHIESCHAN S, et al. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone[J]. Plant Cell Environ, 2002, 25(6):717-726.DOI:10.1046/j.1365-3040.2002.00859.x. |
[35] | 罗夏琳, 胡玉斐, 李攻科. 微波辅助消解-电感耦合等离子体原子发射光谱测定烟草中的重金属[J]. 分析科学学报, 2016, 32(2):249-252.DOI:10.13526/j.issn.1006-6144.2016.02.020. |
LUO X L, HU Y F, LI G K. Determination of heavy metals in tobaccos by microwave-assisted digestion-inductively coupled plasma-optical emission spectrometry[J]. J Anal Sci, 2016, 32(2):249-252.DOI:10.13526/j.issn.1006-6144.2016.02.020. | |
[36] | ÜLKER B, SOMSSICH I E. WRKY transcription factors:from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004, 7(5):491-498.DOI:10.1016/j.pbi.2004.07.012. |
[37] | RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15(5):247-258.DOI:10.1016/j.tplants.2010.02.006. |
[38] | KIM C Y, ZHANG S Q. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco[J]. Plant J, 2004, 38(1):142-151.DOI:10.1111/j.1365-313x.2004.02033.x. |
[39] | XIE Z, ZHANG Z L, ZOU X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137(1):176-189.DOI:10.1104/pp.104.054312. |
[40] | GUPTA S, MISHRA V K, KUMARI S, et al. Deciphering genome-wide WRKY gene family of Triticum aestivum L[J]. Genes Genom, 2019, 41(1):79-94.DOI:10.1007/s13258-018-0742-9. |
[41] | XIE T, CHEN C J, LI C H, et al. Genome-wide investigation of WRKY gene family in pineapple:evolution and expression profiles during development and stress[J]. BMC Genom, 2018, 19(1):490.DOI:10.1186/s12864-018-4880-x. |
[42] | DONG J X, CHEN C H, CHEN Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51(1):21-37.DOI:10.1023/a:1020780022549. |
[43] | CHRISTIAN A, YUE R, LIU Q, et al. The WRKY gene family in rice (Oryza sativa)[J]. J Integr Plant Biol, 2007(6):827-842.DOI:10.1111/j.1744-7909.2007.00504.x. |
[44] | YANG B, JIANG Y Q, RAHMAN M H, et al. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments[J]. BMC Plant Biol, 2009, 9:68.DOI:10.1186/1471-2229-9-68. |
[45] | TIIKA R J, WEI J, MA R, et al. Identification and expression analysis of the WRKY gene family during different developmental stages in Lycium ruthenicum Murr.fruit[J]. Peer J, 2020, 8:e10207.DOI:10.7717/peerj.10207. |
[46] | WANG D, CHEN Q Y, CHEN W W, et al. A WRKY transcription factor,EjWRKY17,from Eriobotrya japonica enhances drought tolerance in transgenic Arabidopsis[J]. Int J Mol Sci, 2021, 22(11):5593.DOI:10.3390/ijms22115593. |
[47] | DANG F F, LIN J H, CHEN Y P, et al. A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper[J]. J Exp Bot, 2019, 70(5):1581-1595.DOI:10.1093/jxb/erz006. |
[48] | CAI Z D, XIAN P Q, WANG H, et al. Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes[J]. Front Plant Sci, 2020, 11:724.DOI:10.3389/fpls.2020.00724. |
[1] | SUN Jinwei, WANG Shengyan, FAN Diwu, ZHU Yongli. Effects of C, N and P additions on soil respiration in woodland under Cd stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 140-146. |
[2] | QUE Feng, LIU Qingnan, ZHA Ruofei, WEI Qiang. Identification and analysis of senescence related WRKYs in sheath of Bambusa multiplex [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 113-123. |
[3] | HUANG Biyun, ZHUO Renying, QIAO Guirong. Comparative analysis of different types of callus in moso bamboo [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 141-149. |
[4] | ZHANG Ting, BAI Yang, QI Xiwu, YU Xu, FANG Hailing, LI Li, LIU Dongmei, LIANG Chengyuan, LI Weilin. Cloning and expression analyses of MhWRKY57 response to jasmonic acid in Mentha canadensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 279-287. |
[5] | WANG Zhanjun, WU Ziqi, WANG Zhaoxia, OU Zulan, LI Jie, CAI Qianwen, XU Zhongdong, ZHANG Zhaoliang. A comparative study of the evolution and codon usage bias in WOX gene family of three Camellia sinensis cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 71-80. |
[6] | NA Xiaoying, LIU Gang, LIU Guifeng, WANG Xiuwei. Effects of the four genes expressions and photosynthetic parameters on seedlings growth of different birch clones [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 88-94. |
[7] | LIN Lili, HU Anqi, CHEN Gang, ZHANG Jiyue, CAO Guangqiu, CAO Shijiang. Cloning and expression characteristics of ClWRKY44 gene from Cunninghamia lanceolata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 203-209. |
[8] | WANG Peilong, YANG Ni, ZHANG Aoran, Tangnver•Sailike , LI Shuang, GAO Caiqiu. Cloning ThPCS1 gene of Tamarix hispida to improve cadmium tolerance [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 71-78. |
[9] | LI Mengjuan, ZHU Liming, HUO Junnan, ZHANG Jingbo, SHI Jisen, CHENG Tielong. Cloning and expression analyses of NtCBL1,NtCBL2 gene of Nitraria tangutorum [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 93-99. |
[10] | ZHOU Xiaofeng, MO Zhenghai, SHANG Yangjuan, LUO Min, SU Wenchuan, TAN Pengpeng, HAN Minghui, DENG Qiuju, TIAN Zhaoxia, PENG Fangren. Cloning and expression analysis of the CiDGAT1 from Carya illinoinensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 55-62. |
[11] | WANG Min, XI Dong, MO Zhenghai, CHEN Yu, ZHAO Yuqiang, ZHU Cancan. Cloning, subcellular localization and expression analysis of CiAGL6 gene in pecan [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 63-69. |
[12] | ZHANG Qing, WEI Shuhe, DAI Huiping, JIA Genliang. The alleviating effects of selenium on cadmium-induced toxicity in tea leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 200-204. |
[13] | TIAN Xueyao, ZHOU Jie, WANG Baosong, HE Kaiyue, HE Xudong. Cloning and expression pattern analysis of NAC genes in Salix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 119-124. |
[14] | WANG Ying, QIU Wenmin, LI He, HE Xuelian, LIU Mingying, HAN Xiaojiao, QU Tongbao, ZHUO Renying. Research on the response of SaWRKY7 gene to cadmium stress in Sedum alfredii Hance [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 59-66. |
[15] | ZHANG Chunhong, XIONG Zhenhao, WU Wenlong, LI Weilin. CAD enzyme activity and gene expression in connection with lignin synthesis during fruit development and ripening process of blackberry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 141-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||