JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1): 131-139.doi: 10.12302/j.issn.1000-2006.202205036
Previous Articles Next Articles
PENG Zhongtao1(), GUO Jiaxing1, WANG Yixuan2, WANG Lei2, JIN Guangze1, LIU Zhili1,*()
Received:
2022-05-23
Revised:
2023-05-13
Online:
2024-01-30
Published:
2024-01-24
Contact:
LIU Zhili
E-mail:1426002467@qq.com;liuzl2093@126.com
CLC Number:
PENG Zhongtao, GUO Jiaxing, WANG Yixuan, WANG Lei, JIN Guangze, LIU Zhili. Variation and correlation analysis of leaf traits of three Acer species in different growth periods in the Xiaoxing’an Mountains of northeast China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 131-139.
Fig. 1
Violin plots for leaf traits of three Acer species in different growth periods Different uppercase letters meant significant difference among leaf traits of different species at 0.05 level, different lowercase letters meant significant difference among leaf traits of different leaf growth periods for each species at 0.05 level."
Fig. 3
Variations for trait-trait relationships of different Acer species P<0.05 means significant difference in trait-trait relationships for different species. The significant relationship among leaf traits are represented by regression segments. If there is no significant relationship between leaf traits, the regression line is not shown. The same below."
Fig. 4
Variations for trait-trait relationships between different growth periods of three Acer species P<0.05 means significant difference in trait-trait relationships for different growth periods of three species. The significant relationship among leaf traits are represented by regression segments. If there is no significant relationship between leaf traits, the regression line is not shown."
[1] | WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytol, 2005, 166(2):485-496.DOI: 10.1111/j.1469-8137.2005.01349.x. |
[2] | FAJARDO A, SIEFERT A. Phenological variation of leaf functional traits within species[J]. Oecologia, 2016, 180(4):951-959.DOI: 10.1007/s00442-016-3545-1. |
[3] | HE N P, LI Y, LIU C C, et al. Plant trait networks:improved resolution of the dimensionality of adaptation[J]. Trends Ecol Evol, 2020, 35(10):908-918.DOI: 10.1016/j.tree.2020.06.003. |
[4] | OSNAS J L D, LICHSTEIN J W, REICH P B, et al. Global leaf trait relationships:mass,area,and the leaf economics spectrum[J]. Science, 2013, 340(6133):741-744.DOI: 10.1126/science.1231574. |
[5] | 刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4):325-339. |
LIU X J, MA K P. Plant functional traits: concepts,applications and future directions[J]. Sci Sin (Vitae), 2015, 45(4):325-339.DOI: 10.1360/N052014-00244. | |
[6] | CUI E Q, WENG E S, YAN E R, et al. Robust leaf trait relationships across species under global environmental changes[J]. Nat Commun, 2020, 11(1):2999.DOI: 10.1038/s41467-020-16839-9. |
[7] | FUNK J L, LARSON J E, VOSE G. Leaf traits and performance vary with plant age and water availability in Artemisia californica[J]. Ann Bot, 2021, 127(4):495-503.DOI: 10.1093/aob/mcaa106. |
[8] | JANKOWSKI A, WYKA T P, ZYTKOWIAK R, et al. Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L.along a 1 900 km temperate-boreal transect[J]. Funct Ecol, 2017, 31(12):2212-2223.DOI: 10.1111/1365-2435.12946. |
[9] | 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6):844-852. |
ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Acta Phytoecol Sin, 2004, 28(6):844-852.DOI:10.1752/cjpe.2004.0110. | |
[10] | POORTER L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests[J]. New Phytol, 2009, 181(4):890-900.DOI: 10.1111/j.1469-8137.2008.02715.x. |
[11] | BASNETT S, DEVY S M. Phenology determines leaf functional traits across Rhododendron species in the Sikkim Himalaya[J]. Alp Bot, 2021, 131(1):63-72.DOI: 10.1007/s00035-020-00244-5. |
[12] | LI S J, WANG H, GOU W, et al. Leaf functional traits of dominant desert plants in the Hexi Corridor,northwestern China:trade-off relationships and adversity strategies[J]. Glob Ecol Conserv, 2021, 28:e01666.DOI: 10.1016/j.gecco.2021.e01666. |
[13] | CONEVA V, CHITWOOD D H. Genetic and developmental basis for increased leaf thickness in the Arabidopsis Cvi ecotype[J]. Front Plant Sci, 2018, 9:322.DOI: 10.3389/fpls.2018.00322. |
[14] | RICHARDSON A D, DUIGAN S P, BERLYN G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytol, 2002, 153(1):185-194.DOI: 10.1046/j.0028-646X.2001.00289.x. |
[15] | WU J, ALBERT L P, LOPES A P, et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests[J]. Science, 2016, 351(6276):972-976.DOI: 10.1126/science.aad5068. |
[16] | BURNETT A C, SERBIN S P, LAMOUR J, et al. Seasonal trends in photosynthesis and leaf traits in scarlet oak[J]. Tree Physiol, 2021, 41(8):1413-1424.DOI: 10.1093/treephys/tpab015. |
[17] | LIU Y Z, LI G Y, WU X W, et al. Linkage between species traits and plant phenology in an alpine meadow[J]. Oecologia, 2021, 195(2):409-419.DOI: 10.1007/s00442-020-04846-y. |
[18] | MOORE T E, JONES C S, CHONG C, et al. Impact of rainfall seasonality on intraspecific trait variation in a shrub from a Mediterranean climate[J]. Funct Ecol, 2020, 34(4):865-876.DOI: 10.1111/1365-2435.13533. |
[19] | CHAVANA-BRYANT C, MALHI Y, WU J, et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements[J]. New Phytol, 2017, 214(3):1049-1063.DOI: 10.1111/nph.13853. |
[20] | HUANG L, KOUBEK T, WEISER M, et al. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species[J]. J Ecol, 2018, 106(4):1621-1633.DOI: 10.1111/1365-2745.12927. |
[21] | FLYNN D F B, WOLKOVICH E M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community[J]. New Phytol, 2018, 219(4):1353-1362.DOI: 10.1111/nph.15232. |
[22] | LIU Z L, JIANG F, LI F R, et al. Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances[J]. For Ecol Manag, 2019, 434:63-75.DOI: 10.1016/j.foreco.2018.12.008. |
[23] | MCKOWN A D, GUY R D, AZAM M S, et al. Seasonality and phenology alter functional leaf traits[J]. Oecologia, 2013, 172(3):653-665.DOI: 10.1007/s00442-012-2531-5. |
[24] | CROFT H, CHEN J M, LUO X Z, et al. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity[J]. Glob Change Biol, 2017, 23(9):3513-3524.DOI: 10.1111/gcb.13599. |
[25] | WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.DOI: 10.1038/nature02403. |
[26] | FAJARDO A, MORA J P, ROBERT E. Corner’s rules pass the test of time:little effect of phenology on leaf-shoot and other scaling relationships[J]. Ann Bot, 2020, 126(7): 1129-1139. |
[27] | 徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012, 20(4):470-481. |
XU L N, JIN G Z. Species composition and community structure of a typical mixed broad-leaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,northeast China[J]. Biodivers Sci, 2012, 20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233. | |
[28] | LIU Z L, CHEN J M, JIN G Z, et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests[J]. Agric For Meteorol, 2015, 209/210:36-48.DOI: 10.1016/j.agrformet.2015.04.025. |
[29] | RASBAND W S, IMAGE J U S. National institutes of health, bethesda[R/OL]. Maryland, USA: National Institutes of Health, 1997. https://imagej.nih.gov/ij/. |
[30] | R Core Team. R: a language and environment for statistical computing[Z]. The R Foundation for Statistical Computing, Vienna, Austria, 2017. http://www.R-project.org/. |
[31] | BASNETT S, NAGARAJU S K, RAVIKANTH G, et al. Influence of phylogeny and abiotic factors varies across early and late reproductive phenology of Himalayan Rhododendrons[J]. Ecosphere, 2019, 10(1):e02581.DOI: 10.1002/ecs2.2581. |
[32] | ALBERT L P, WU J, PROHASKA N, et al. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest[J]. New Phytol, 2018, 219(3):870-884.DOI: 10.1111/nph.15056. |
[33] | HALLIK L, NIINEMETS Ü, KULL O. Photosynthetic acclimation to light in woody and herbaceous species:a comparison of leaf structure,pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biol, 2012, 14(1):88-99.DOI: 10.1111/j.1438-8677.2011.00472.x. |
[34] | EVANS J R, POORTER H. Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant Cell Environ, 2001, 24(8):755-767.DOI: 10.1046/j.1365-3040.2001.00724.x. |
[35] | LEISHMAN M R, HASLEHURST T, ARES A, et al. Leaf trait relationships of native and invasive plants:community- and global-scale comparisons[J]. New Phytol, 2007, 176(3):635-643.DOI: 10.1111/j.1469-8137.2007.02189.x. |
[36] | DONG N, PRENTICE I C, WRIGHT I J, et al. Components of leaf-trait variation along environmental gradients[J]. New Phytol, 2020, 228(1):82-94.DOI: 10.1111/nph.16558. |
[37] | 金明月, 姜峰, 金光泽, 等. 不同年龄白桦比叶面积的生长阶段变异及冠层差异[J]. 林业科学, 2018, 54(9):18-26. |
JIN M Y, JIANG F, JIN G Z, et al. Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages[J]. Sci Silvae Sin, 2018, 54(9):18-26.DOI: 10.11707/j.1001-7488.20180903. | |
[38] | MARENCO R A, ANTEZANA-VERA S A, NASCIMENTO H C S. Relationship between specific leaf area,leaf thickness,leaf water content and SPAD-502 readings in six Amazonian tree species[J]. Photosynthetica, 2009, 47(2):184-190.DOI: 10.1007/s11099-009-0031-6. |
[39] | 盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581-1589. |
PAN Y F, CHEN X B, JIANG Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecol Sin, 2018, 38(5):1581-1589.DOI: 10.5846/stxb201701210173. | |
[40] | ANDEREGG L D L, LOY X, MARKHAM I P, et al. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees[J]. New Phytol, 2021, 229(3):1375-1387.DOI: 10.1111/nph.16795. |
[41] | GRIFFITH D M, QUIGLEY K M, ANDERSON T M. Leaf thickness controls variation in leaf mass per area (LMA) among grazing-adapted grasses in Serengeti[J]. Oecologia, 2016, 181(4):1035-1040.DOI: 10.1007/s00442-016-3632-3. |
[42] | LI L, MCCORMACK M L, MA C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecol Lett, 2015, 18(9):899-906.DOI: 10.1111/ele.12466. |
[43] | MARÉCHAUX I, SAINT-ANDRÉ L, BARTLETT M K, et al. Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest[J]. J Ecol, 2020, 108(3):1030-1045.DOI: 10.1111/1365-2745.13321. |
[44] | WILSON P J, THOMPSON K, HODGSON J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytol, 1999, 143(1):155-162.DOI: 10.1046/j.1469-8137.1999.00427.x. |
[45] | QI J H, FAN Z X, FU P L, et al. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees:carbon gain,hydraulics and nutrient-use efficiencies[J]. Tree Physiol, 2021, 41(1):12-23.DOI: 10.1093/treephys/tpaa131. |
[46] | 田俊霞, 魏丽萍, 何念鹏, 等. 温带针阔混交林叶片性状随树冠垂直高度的变化规律[J]. 生态学报, 2018, 38(23):8383-8391. |
TIAN J X, WEI L P, HE N P, et al. Vertical variation of leaf functional traits in temperate forest canopies in China[J]. Acta Ecol Sin, 2018, 38(23):8383-8391.DOI: 10.5846/stxb201801020006. | |
[47] | 朱弘, 朱淑霞, 李涌福, 等. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12):1168-1178. |
ZHU H, ZHU S X, LI Y F, et al. Leaf phenotypic variation in natural populations of Cerasus dielsiana[J]. Chin J Plant Ecol, 2018, 42(12):1168-1178.DOI: 10.17521/cjpe.2018.0196. | |
[48] | MARTINEZ K A, FRIDLEY J D. Acclimation of leaf traits in seasonal light environments:are non-native species more plastic?[J]. J Ecol, 2018, 106(5):2019-2030.DOI: 10.1111/1365-2745.12952. |
[49] | PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61(3):167.DOI: 10.1071/bt12225. |
[50] | CUBINO J P, BIURRUN I, BONARI G, et al. The leaf economic and plant size spectra of European forest understory vegetation[J]. Ecography, 2021, 44(9):1311-1324.DOI: 10.1111/ecog.05598. |
[51] | SAVAGE J A. It’s all about timing—Or is it?Exploring the potential connection between phloem physiology and whole plant phenology[J]. Am J Bot, 2020, 107(6):848-851.DOI: 10.1002/ajb2.1480. |
[52] | DAYRELL R L C, ARRUDA A J, PIERCE S, et al. Ontogenetic shifts in plant ecological strategies[J]. Funct Ecol, 2018, 32(12):2730-2741.DOI: 10.1111/1365-2435.13221. |
[53] | BLOOMFIELD K J, CERNUSAK L A, EAMUS D, et al. A continental-scale assessment of variability in leaf traits:within species,across sites and between seasons[J]. Funct Ecol, 2018, 32(6):1492-1506.DOI: 10.1111/1365-2435.13097. |
[1] | TIAN Mengyang, ZHU Shulin, DOU Quanqin, JI Yanhong. The effects of intercropping of Carya illinoinensis and Camellia sinensis ‘Anjibaicha’ on photosynthetic characteristics of C. sinensis tree during rapid growth period [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 86-96. |
[2] | WEI Jing, TAN Xing, WANG Changsheng, YAN Rui, LI Linke, NING Yue, LIU Yun. Comparison of growth and photosynthetic characteristics of introduced Acer rubrum on two purple soils [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 97-105. |
[3] | JIA Ruirui, ZHU Yanyan, YANG Xiulian, FU Yu, YUE Yuanzheng, WANG Lianggui. Effects of different rootstocks on growth and photosynthetic characteristics of grafted seedlings of Catalpa bungei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 97-106. |
[4] | CUI Qi, WU Yun, LI Dongze, WU Fan, HAN Ruilian, HUANG Junhua, HU Shaoqing. Changes of coloration and pigment compositions during leaf development of Osmanthus fragrans colour group cultivar [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 79-86. |
[5] | TIAN Mengyang, DOU Quanqin, XIE Yinfeng, TANG Wenhua, JI Yanhong. Study on photosynthetic characteristics of four pecan cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 67-74. |
[6] | HUANG Xiaohui, WU Jiaojiao, WANG Yushu, FENG Dalan, SUN Xiangyang. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 119-126. |
[7] | JI Yanhong, PAN Pingping, DOU Quanqin, XIE Yinfeng. Effect of fungus-residue and other matrix formulations on growth and chlorophyll fluorescence parameters of shelled walnut seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 145-155. |
[8] | ZHANG Meng, XU Gaoshan, TENG Zhiyuan, LIU Guanjun, ZHANG Xiuli. Effects of simulated acid rain on growth and photosynthetic physiological characteristics of Populus simonii ×P. nigra [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 57-64. |
[9] | YUAN Tingting, LU Yuanfeng, XIE Yinfeng, MA Yingli, WU Tong, NI Zhen. Effects of combined application of boron-molybdenum-copper microfertilizers on photosynthetic characteristics of Pseudostellaria heterophylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 130-136. |
[10] | SHENG Qianqian, DAI Anqi, SONG Min, TANG Rui, ZHU Zunling. Photosynthetic physiological characteristics of two kinds of hornbeam under NO2 stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 10-16. |
[11] | DU Jincheng, LI Xinxin, DENG Xiaobing, MU Changlong. Comparisons of leaf functional characteristics of nine olive varieties [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 159-164. |
[12] | ZHONG Lei, ZHANG Huanchao, FAN Junjun, ZHANG Dandan, JIANG Hao, ZHANG Wangxiang. Effects of flooding stress on leaf color and photosynthetic fluorescence characteristics of Liquidambar styraciflua cutting seedlings in summer [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 69-76. |
[13] | TANG Wenhua, DOU Quanqin, PAN Pingping, JI Yanhong, XIE Yinfeng. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 81-88. |
[14] | LI Xiaorui, ZHOU Fan, FENG Gang, ZHENG Xiaoqin, LI Yongrong, PENG Fangren. Photosynthetic and fluorescence characteristics of pecan grafting seedlings grafted on different rootstocks [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 84-90. |
[15] | XU Qing, BI Hongyan, CUI Guangshuai, GUO Xiaorong, ZHOU Rui, SU Wenhua, OUYANG Zhiqin, ZHANG Guangfei. Response of photosynthetic fluorescence of the endangered plant Manglietia ventii seedlings to shade treatment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 46-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||