JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1): 140-146.doi: 10.12302/j.issn.1000-2006.202204011
Previous Articles Next Articles
SUN Jinwei1(), WANG Shengyan1, FAN Diwu1, ZHU Yongli1,2,3,*()
Received:
2022-04-07
Revised:
2022-06-16
Online:
2024-01-30
Published:
2024-01-24
Contact:
ZHU Yongli
E-mail:635914827@qq.com;lyly2011@126.com
CLC Number:
SUN Jinwei, WANG Shengyan, FAN Diwu, ZHU Yongli. Effects of C, N and P additions on soil respiration in woodland under Cd stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 140-146.
Table 1
Differences in the effects of different Cd doses and treatments on soil respiration rate"
剂量/ (mg·kg-1) dose | R/(mg·kg-1·h-1) | 交互效应/% interaction | 剂量/ (mg·kg-1) dose | R/(mg·kg-1·h-1) | 交互效应/% interaction | ||||
---|---|---|---|---|---|---|---|---|---|
GC-CK | NP-CK | (GC+NP)-CK | GC-CK | NP-CK | (GC+NP)-CK | ||||
0(CK) | 18.5±9.2 | 0.2±5.2 | 16.9±11.7 | 拮抗 | 0.60 | 10.9±6.6 | -2.6±1.5 | 10.5±8.1 | 协同 |
0.01 | 13.5±7.5 | -1.4±2.3 | 16.4±4.1 | 协同 | 1.00 | 13.5±7.6 | -0.4±1.5 | 10.3±6.3 | 拮抗 |
0.02 | 12.4±3.3 | -2.5±2.1 | 11.8±8.8 | 协同 | 2.50 | 11.8±6.6 | -0.5±1.5 | 13.4±7.9 | 协同 |
0.04 | 11.9±6.4 | -2.7±3.8 | 9.4±5.8 | 协同 | 5.00 | 11.0±6.5 | -1.4±1.2 | 11.2±8.1 | 协同 |
0.10 | 8.0±4.7 | -2.4±9.0 | 6.5±3.2 | 协同 | 10.00 | 11.3±6.2 | -1.1±1.4 | 10.2±6.1 | 协同 |
0.20 | 10.9±6.3 | -1.7±1.3 | 9.7±7.5 | 协同 | 13.00 | 12.7±8.8 | -1.2±1.0 | 11.9±5.1 | 协同 |
0.30 | 12.4±8.2 | -1.6±0.9 | 10.6±6.3 | 拮抗 | 20.00 | 10.8±6.4 | -1.0±1.1 | 9.7±5.9 | 拮抗 |
0.40 | 13.0±6.8 | -0.3±4.9 | 11.8±5.9 | 拮抗 | 30.00 | 11.9±6.5 | -1.6±2.2 | 9.8±7.9 | 拮抗 |
[1] | CALABRESE E J, BALDWIN L A. Toxicology rethinks its central belief[J]. Nature, 2003, 421(6924):691-692.DOI: 10.1038/421691a. |
[2] | CALABRESE E J, BLAIN R B. Hormesis and plant biology[J]. Environ Pollut, 2009, 157(1):42-48.DOI: 10.1016/j.envpol.2008.07.028. |
[3] | EROFEEVA E A. Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses[J]. Dose Response, 2013, 12(1):121-135.DOI: 10.2203/dose-response.13-017.Erofeeva. |
[4] | FARGASOVÁ A. Comparative toxicity of five metals on various biological subjects[J]. Bull Environ Contam Toxicol, 1994, 53(2):317-324.DOI: 10.1007/BF00192051. |
[5] | GHOSH S K, DOCTOR P B, KULKAMI P K. Toxicity of zinc in three microbial test systems[J]. Environ Toxicol Water Qual,1996, 11(1):13-19.DOI: 10.1002/(SICI)1098-2256(1996)11:113:AID-TOX3>3.0.CO;2-C. |
[6] | JOHNSON T E, BRUUNSGAARD H. Implications of hormesis for biomedical aging research[J]. Hum Exp Toxicol, 1998, 17(5):263-265.DOI: 10.1191/096032798678908729. |
[7] | HAN J G, WANG S Y, FAN D W, et al. Time-dependent hormetic response of soil alkaline phosphatase induced by Cd and the association with bacterial community composition[J]. Microb Ecol, 2019, 78(4):961-973.DOI: 10.1007/s00248-019-01371-1. |
[8] | WANG S Y, HUANG B, FAN D W, et al. Hormetic responses of soil microbiota to exogenous Cd:a step toward linking community-level hormesis to ecological risk assessment[J]. J Hazard Mater, 2021, 416:125760.DOI: 10.1016/j.jhazmat.2021.125760. |
[9] | FAN D W, WANG S Y, GUO Y H, et al. The role of bacterial communities in shaping Cd-induced hormesis in ‘living’ soil as a function of land-use change[J]. J Hazard Mater, 2021, 409:124996.DOI: 10.1016/j.jhazmat.2020.124996. |
[10] | CHEN Y P, LIU Q, LIU Y J, et al. Responses of soil microbial activity to cadmium pollution and elevated CO2[J]. Sci Rep, 2014, 4:4287.DOI: 10.1038/srep04287. |
[11] | ZALAGHI R, NOROUZI MASIR M, MOEZZI A. Effects of Cd on soil microbial biomass depend upon its soil fraction distribution[J]. Toxicol Environ Chem, 2019, 101(9/10):486-496.DOI: 10.1080/02772248.2020.1742715. |
[12] | YAO B, HU Q W, ZHANG G H, et al. Effects of elevated CO2 concentration and nitrogen addition on soil respiration in a Cd-contaminated experimental forest microcosm[J]. Forests, 2020, 11(3):260.DOI: 10.3390/f11030260. |
[13] | FAN D W, HAN J G, CHEN Y, et al. Hormetic effects of Cd on alkaline phosphatase in soils across particle-size fractions in a typical coastal wetland[J]. Sci Total Environ, 2018, 613/614:792-797.DOI: 10.1016/j.scitotenv.2017.09.089. |
[14] | TANG H, YAN Q R, WANG X H, et al. Earthworm (Eisenia fetida) behavioral and respiration responses to sublethal mercury concentrations in an artificial soil substrate[J]. Appl Soil Ecol, 2016, 104:48-53.DOI: 10.1016/j.apsoil.2015.12.008. |
[15] | YU Y J, LI X F, YANG G L, et al. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida)[J]. Chemosphere, 2019, 227:489-495.DOI: 10.1016/j.chemosphere.2019.04.064. |
[16] | NING Y C, ZHOU H R, WANG E Z, et al. Study of cadmium (Cd)-induced oxidative stress in Eisenia fetida based on mathematical modelling[J]. Pedosphere, 2021, 31(3):460-470.DOI: 10.1016/S1002-0160(20)60085-6. |
[17] | FAJANA H O, HOGAN N S, SICILIANO S D. Does habitat quality matter to soil invertebrates in metal-contaminated soils?[J]. J Hazard Mater, 2021, 409:124969.DOI: 10.1016/j.jhazmat.2020.124969. |
[18] | RIEPERT F, RÖMBKE J, MOSER T. Earthworm reproduction tests[C]// Ecotoxicological Characterization of Waste. New York: Springer, 2009:171-176.DOI: 10.1007/978-0-387-88959-7_17. |
[19] | Ministry of the Environment, Government of Japan. Environmental quality standards for soil pollution[S].[2022-04-18]. ://www.env.go.jp/en/water/soil/sp.html, 2011. |
[20] | 王国庆, 邓绍坡, 冯艳红, 等. 国内外重金属土壤环境标准值比较:镉[J]. 生态与农村环境学报, 2015, 31(6):808-821. |
WANG G Q, DENG S P, FENG Y H, et al. Comparative study on soil environmental standards for heavy metals in China and other countries:cadmium[J]. J Ecol Rural Environ, 2015, 31(6):808-821.DOI: 10.11934/j.issn.1673-4831.2015.06.004. | |
[21] | 王小庆, 马义兵, 黄占斌. 痕量金属元素土壤环境质量基准研究进展[J]. 土壤通报, 2013, 44(2):505-512. |
WANG X Q, MA Y B, HUANG Z B. Research and prospect on soil quality benchmark for trace elements[J]. Chin J Soil Sci, 2013, 44(2):505-512.DOI: 10.19336/j.cnki.trtb.2013.02.042. | |
[22] | USEPA United States Environmental Protection Agency. Ecological soil screening levels[R/OL]. [2022-04-18]. http://www.epa.gov/ecotox/ecossl, 2011. |
[23] | GEMS D, PARTRIDGE L. Stress-response hormesis and aging:that which does not kill us makes us stronger[J]. Cell Metab, 2008, 7(3):200-203.DOI: 10.1016/j.cmet.2008.01.001. |
[24] | ROZHKO T V, KOLESNIK O V, BADUN G A, et al. Humic substances mitigate the impact of tritium on luminous marine bacteria: involvement of reactive oxygen species[J]. Int J Mol Sci, 2020, 21(18):6783.DOI: 10.3390/ijms21186783. |
[25] | XIE M D, CHEN W Q, DAI H B, et al. Cadmium-induced hormesis effect in medicinal herbs improves the efficiency of safe utilization for low cadmium-contaminated farmland soil[J]. Ecotoxicol Environ Saf, 2021, 225:112724.DOI: 10.1016/j.ecoenv.2021.112724. |
[26] | FAN D W, WANG S Y, GUO Y H, et al. Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition:the role of background Cd contamination and time as additional factors[J]. Sci Total Environ, 2021, 757:143771.DOI: 10.1016/j.scitotenv.2020.143771. |
[27] | 周涵君, 于晓娜, 秦燚鹤, 等. 施用生物炭对Cd污染土壤生物学特性及土壤呼吸速率的影响[J]. 中国烟草学报, 2017, 23(6):61-68. |
ZHOU H J, YU X N, QIN Y H, et al. Effect of biochar application on soil biological characteristics and soil respiration rate in Cd contaminated soil[J]. Acta Tabacaria Sin, 2017, 23(6):61-68.DOI: 10.16472/j.chinatobacco.2017.177. | |
[28] | ALFARO M R, MARTÍN B C, UGARTE O M, et al. Heavy metal concentrations and basal respiration in contaminated substrates used in the Cuban urban agriculture[J]. Water Air Soil Pollut, 2021, 232(3):1-11.DOI: 10.1007/s11270-021-05073-8. |
[29] | STEFANOWICZ A M, KAPUSTA P, ZUBEK S, et al. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites[J]. Chemosphere, 2020, 240:124922.DOI: 10.1016/j.chemosphere.2019.124922. |
[30] | CHEN X M, ZHAO Y, ZHAO X Y, et al. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting:sensitive,resistant and actor[J]. J Hazard Mater, 2020, 398:122858.DOI: 10.1016/j.jhazmat.2020.122858. |
[31] | ZHAO X, SHEN J P, ZHANG L M, et al. Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils[J]. J Hazard Mater, 2020, 389:121838.DOI: 10.1016/j.jhazmat.2019.121838. |
[32] | WANG R, HU Y X, WANG Y, et al. Nitrogen application increases soil respiration but decreases temperature sensitivity:combined effects of crop and soil properties in a semiarid agroecosystem[J]. Geoderma, 2019, 353:320-330.DOI: 10.1016/j.geoderma.2019.07.019. |
[33] | LIU Z Q, SHI Z J, WEI H, et al. Acid rain reduces soil CO2 emission and promotes soil organic carbon accumulation in association with decreasing the biomass and biological activity of ecosystems:a meta-analysis[J]. CATENA, 2022, 208:105714.DOI: 10.1016/j.catena.2021.105714. |
[34] | TAO B X, ZHANG B H, DONG J, et al. Antagonistic effect of nitrogen additions and warming on litter decomposition in the coastal wetland of the Yellow River Delta,China[J]. Ecol Eng, 2019, 131:1-8.DOI: 10.1016/j.ecoleng.2019.02.024. |
[35] | MYERS B, WEBSTER K L, MCLAUGHLIN J W, et al. Microbial activity across a boreal peatland nutrient gradient:the role of fungi and bacteria[J]. Wetlands Ecol Manage, 2012, 20(2):77-88.DOI: 10.1007/s11273-011-9242-2. |
[36] | CAMPOS D, ALVES A, LEMOS M F L, et al. Effects of cadmium and resource quality on freshwater detritus processing chains:a microcosm approach with two insect species[J]. Ecotoxicology, 2014, 23(5):830-839.DOI: 10.1007/s10646-014-1223-9. |
[37] | ZHANG H Y, ZIEGLER W, HAN X G, et al. Plant carbon limitation does not reduce nitrogen transfer from arbuscular mycorrhizal fungi to Plantago lanceolata[J]. Plant Soil, 2015, 396(1):369-380.DOI: 10.1007/s11104-015-2599-x. |
[38] | MAESTRE F T, MARTÍNEZ I, ESCOLAR C, et al. On the relationship between abiotic stress and co-occurrence patterns:an assessment at the community level using soil lichen communities and multiple stress gradients[J]. Oikos, 2009, 118(7):1015-1022.DOI: 10.1111/j.1600-0706.2009.17362.x. |
[1] | WANG Jianchao, QIU Wenmin, JIN Kangming, LU Zhuchou, HAN Xiaojiao, ZHUO Renying, LIU Xiaoguang, HE Zhengquan. Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 49-60. |
[2] | SUN Meijia, ZHOU Zhiyong, WANG Yongqiang, SHEN Ying, XIA Wei. The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 67-75. |
[3] | XU Chen, RUAN Honghua, WU Xiaoqiao, XIE Youchao, YANG Yan. Progresses in drought stress on the accumulation and turnover of soil organic carbon in forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 195-206. |
[4] | ZHAO Shuang, WANG Shaojun, YANG Bo, ZUO Qianqian, CAO Qianbin, WANG Ping, ZHANG Lulu, ZHANG Kunfeng, FAN Yuxiang. Responses of soil respiration to tropical forest secondary succession in Xishuangbanna [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 12-18. |
[5] | WANG Peilong, YANG Ni, ZHANG Aoran, Tangnver•Sailike , LI Shuang, GAO Caiqiu. Cloning ThPCS1 gene of Tamarix hispida to improve cadmium tolerance [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 71-78. |
[6] | ZHAO Xiaoya, GUAN Mengran, SUN Mengyao, WANG Zefu, XU Xiaoniu. Effects of nitrogen and phosphorus additions on litterfall production and nutrient dynamics in evergreen broad-leaved forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 55-62. |
[7] | YANG Sailan, GENG Qinghong, XU Chonghua, PENG Fanxi, ZHANG Menghua, XU Xia. Effects of Solidago canadensis L. invasion on soil respiration in poplar plantations (Populus deltoides) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 117-124. |
[8] | LU Mingxing, XU Chuanhong, ZHU Yongli, LI Pingping. Hormetic effect of Cd on soil alkaline phosphatase:driving mechanism of land use change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 173-180. |
[9] | ZHANG Qing, WEI Shuhe, DAI Huiping, JIA Genliang. The alleviating effects of selenium on cadmium-induced toxicity in tea leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 200-204. |
[10] | DENG Xiaojun, TANG Jian, WANG Huili, SONG Xianchong, CAO Jizhao, QING Zuoyu, SONG Guangtao. Soil nitrification denitrification respiration and their influence factor analysis in different vegetation zones along elevationnal gradient in Mao’er Mountain of China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 81-88. |
[11] | WANG Ying, QIU Wenmin, LI He, HE Xuelian, LIU Mingying, HAN Xiaojiao, QU Tongbao, ZHUO Renying. Research on the response of SaWRKY7 gene to cadmium stress in Sedum alfredii Hance [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 59-66. |
[12] | YIN Jie, FAN Diwu, XU Sha, HAN Jiangang, ZHU Yongli, XUE Jianhui. Hormetic effects of Cr3+, Pb2+ and Cd2+ on nitrate reductase in soils in Chongming Dongtan wetlands [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(02): 21-26. |
[13] | GAO Weifeng,SHI Baoku,JIN Guangze. Effect of simulated nitrogen deposition on soil respiration in the typical mixed broadleaved-korean pine forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(01): 8-14. |
[14] | ZHAO Jixia, WANG Shaojun, CHEN Qibo, WANG Yanxia, XIONG Haoqin. Soil respiration and its affecting factors in young and mature forests of Pinus yunnanensis in middle Yunnan plateau, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(03): 71-76. |
[15] | WU Peng, CUI Yingchun, YANG Ting, DING Fangjun, CHEN Jun,ZHU Jun. Soil respiration of major successional communities in the Maolan Nature Reserve of Karst areas [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(04): 57-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||