JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1): 169-178.doi: 10.12302/j.issn.1000-2006.202202015
Previous Articles Next Articles
ZHOU Youfeng1(), XIE Binglou2,*(), LI Mingshi1
Received:
2022-02-18
Revised:
2022-04-07
Online:
2024-01-30
Published:
2024-01-24
Contact:
XIE Binglou
E-mail:281833932@qq.com;xiebinglou2022@163.com
CLC Number:
ZHOU Youfeng, XIE Binglou, LI Mingshi. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 169-178.
Table 1
Allometric growth equation of dominant tree species in the study area"
树种 species | 异速生长方程 allometric growth equations | 树种 species | 异速生长方程 allometric growth equations |
---|---|---|---|
杉木 Cunninghamia lanceolata | W干=0.340 15 D-0.392 39H0.408 90V | 马尾松 Pinus massoniana | W干=0.292 89 D0.146 21H0.008 924V |
W枝=0.271 40 D1.072 61H0.281 71V | W枝=0.125 32 V | ||
W叶=0.464 93 D-0.328 92H0.046 374V | W叶=0.079 612 D-0.352 63H0.015 724V | ||
阔叶树 broad-leaved tree | W干=0.297 00 D0.212 72H0.046 374V | 桉树 Eucalyptus robusta | W干=0.237 19 D0.315 57H-0.022 517V |
W枝=0.545 41 D0.274 01H-0.165 65V | W枝=0.090 123 D-0.302 67H0.019 109V | ||
W叶=0.225 26 D-0.388 74H-0.219 25V | W叶=0.052 063 7 D-0.216 66H0.014 372V | ||
毛竹 Phyllostachys edulis | W干=0.000 096 7 D0.217 5N | 杂竹 miscellaneous bamboo | W干=0.001 Ne3.274 82-9.674 4/D |
W枝=0.000 831 98 D1.177 4N0.648 | W枝=0.001 N/(0.685+12.893e-D) | ||
W叶=0.000 509 9 D1.177 4N0.648 | W叶=0.001 N/(1.056+48.560 9eD) |
Table 2
AGB distribution of valid sample plots"
林分类型 stand type | 样地数量 sample size | 平均胸径/cm mean DBH | 平均 树高/m mean tree height | 森林地上生物量AGB/(t·hm-2) | |||
---|---|---|---|---|---|---|---|
最小值 min | 最大值 max | 平均值 mean | 标准差 SD | ||||
阔叶纯林pure broad-leaved forest | 39 | 10.0 | 12 | 2.97 | 168.70 | 38.51 | 33.73 |
针叶纯林pure coniferous forest | 43 | 10.6 | 10 | 6.48 | 87.78 | 27.05 | 23.65 |
阔叶混交林mixed broad-leaved forest | 97 | 12.0 | 10 | 2.83 | 203.16 | 79.36 | 49.99 |
针叶混交林mixed coniferous forest | 9 | 13.7 | 10 | 11.76 | 131.42 | 55.43 | 40.53 |
针阔混交林mixed broadleaf-conifer forest | 17 | 12.5 | 10 | 13.78 | 91.15 | 49.92 | 24.02 |
竹林bamboo forest | 26 | 6.6 | 9 | 2.08 | 202.50 | 60.10 | 60.10 |
灌木林shrubwood | 14 | 8.9 | 7 | 12.37 | 158.53 | 67.26 | 58.22 |
总计total | 245 | 9.2 | 11 |
Fig. 2
The importance ranking of the variables for AGB mapping by using RF model B1, B2, B3 and B7 represent the surface reflectance of Landsat 5 TM images at bands 1, 2, 3 and 7. TM12, TM13, TM15, TM21, TM24, TM31, TM34, TM35, TM42, TM51, TM52, TM53, TM57, TM74 and TM75 represent the ratio of surface reflectance in one band of Landsat 5 TM image to that in another band, such as TM12, that is B1/B2; TM1_1, TM2_1, TM3_1 and TM7_1 represent the reciprocal of surface reflectance in bands 1, 2, 3 and 7 of Landsat 5 TM images. PC1 and PC3 represent the first principal component and the third principal component of Landsat 5 TM images. RVI and ARVI represent ratio vegetation index and atmospheric resistance vegetation index, respectively. Brightness indicates the brightness value of Landsat 5 TM images obtained by hat transformation. mean77, mean99 and correlation99 indicate the mean texture features obtained in 7×7 window size based on PC1, and the mean value and correlation texture features obtained in 9×9 window size, respectively. HH and HV represent the backscattering coefficients of HH and HV polarization information of PALSAR-1. HHcorrelation55 and HHcorrelation77 indicate the correlation texture features obtained in the 5×5 and 7×7 window sizes of HH, respectively. HVmean55, HVmean77 and HVmean99 represent the mean texture features obtained by HV using 5×5, 7×7 and 9×9 window sizes, respectively. HVcorrelation77 and HVcorrelation99 indicate the correlation texture features obtained by HV using 7×7 and 9×9 window sizes, respectively."
Table 3
The simulated semivariogram models(OK and CK)and their descriptive parameters"
克里金法 Kriging | 变异函数模型 variogram models | 块金值 nugget | 基台值 sill | 块金值/基台值 nugget/sill | 变程/km range | R2 | 残差平方和 RSS |
---|---|---|---|---|---|---|---|
指数函数exponential | 376.32 | 387.94 | 0.97 | 72.32 | 0.153 | 8 921.4 | |
OK | 球面函数spherical | 400.50 | 407.20 | 0.98 | 78.21 | 0.161 | 8 784.6 |
高斯函数Gaussian | 372.30 | 387.03 | 0.96 | 72.70 | 0.162 | 8 754.5 | |
指数函数exponential | 390.86 | 411.43 | 0.95 | 61.34 | 0.188 | 8 287.4 | |
CK | 球面函数spherical | 365.24 | 376.54 | 0.97 | 50.46 | 0.192 | 8 234.6 |
高斯函数Gaussian | 372.37 | 393.68 | 0.95 | 48.47 | 0.194 | 8 145.2 |
[1] | PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI:10.1126/science.1201609. |
[2] | 张志, 田昕, 陈尔学, 等. 森林地上生物量估测方法研究综述[J]. 北京林业大学学报, 2011, 33(5):144-150. |
ZHANG Z, TIAN X, CHEN E X, et al. Review of methods on estimating forest above ground biomass[J]. J Beijing For Univ, 2011, 33(5):144-150.DOI:10.13332/j.1000-1522.2011.05.026. | |
[3] | 张少伟, 惠刚盈, 韩宗涛, 等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用, 2019, 34(5):925-938. |
ZHANG S W, HUI G Y, HAN Z T, et al. Estimation of large-scale forest above-ground biomass based on fast optimizing remotely sensed features from optical multi-spectral and SAR data[J]. Remote Sens Technol Appl, 2019, 34(5):925-938.DOI:10.11873/j.issn.1004-0323.2019.5.0925. | |
[4] | 汤旭光, 刘殿伟, 王宗明, 等. 森林地上生物量遥感估算研究进展[J]. 生态学杂志, 2012, 31(5):1311-1318. |
TANG X G, LIU D W, WANG Z M, et al. Estimation of forest aboveground biomass based on remote sensing data:a review[J]. Chin J Ecol, 2012, 31(5):1311-1318.DOI:10.13292/j.1000-4890.2012.0182. | |
[5] | 韩爱惠. 森林生物量及碳储量遥感监测方法研究[D]. 北京: 北京林业大学, 2009. |
HAN A H. Study on monitoring method of forest biomass and carton storage based on remote sensing[D]. Beijing: Beijing Forestry University, 2009. | |
[6] | 孙雪莲, 舒清态, 欧光龙, 等. 基于随机森林回归模型的思茅松人工林生物量遥感估测[J]. 林业资源管理, 2015(1):71-76. |
SUN X L, SHU Q T, OU G L, et al. Remote sensing estimation of the biomass of artificial Simao pine forest based on random forest regression[J]. For Resour Manag, 2015(1):71-76.DOI:10.13466/j.cnki.lyzygl.2015.01.013. | |
[7] | 欧光龙, 胥辉. 森林生物量模型研究综述[J]. 西南林业大学学报(自然科学), 2020, 40(1):1-11. |
OU G L, XU H. A review on forest biomass models[J]. J Southwest For Univ(Nat Sci), 2020, 40(1):1-11.DOI:10.11929/j.swfu.201907029. | |
[8] | 张雷, 王琳琳, 张旭东. 随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J]. 生态学报, 2014, 34(3):650-659. |
ZHANG L, WANG L L, ZHANG X D, et al. The basic principle of random forest and its applications in ecology: a case study of Pinus yunnanensis[J]. Acta Ecol Sin, 2014, 34(3):650-659. DOI:10.5846/stxb201306031292. | |
[9] | BREIMAN L. Random forests[J]. Mach Learn, 2001, 45(1):5-32.DOI:10.1023/A:1010933404324. |
[10] | ZHAO Q X, YU S C, ZHAO F, et al. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments[J]. For Ecol Manag, 2019, 434:224-234.DOI:10.1016/j.foreco.2018.12.019. |
[11] | HLATSHWAYO S T, MUTANGA O, LOTTERING R T, et al. Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery[J]. Int J Appl Earth Obs Geoinformation, 2019, 74:65-77. DOI:10.1016/j.jag.2018.09.005. |
[12] | 许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11):147-155. |
XU Z Y, LI Y C, LI M Y, et al. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image[J]. J Central South Univ For Technol, 2020, 40(11):147-155.DOI:10.14067/j.cnki.1673-923x.2020.11.018. | |
[13] | GUO P T, LI M F, LUO W, et al. Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals Kriging approach[J]. Geoderma, 2015, 237:49-59. DOI:10.1016/j.geoderma.2014.08.009. |
[14] | SEKULIC A, KILIBARDA M, HEUVELINK G B M, et al. Random forest spatial interpolation[J]. Remote Sens, 2020, 12(10):1687.DOI:10.3390/rs12101687. |
[15] | FAYAD I, BAGHDADI N, BAILLY J S, et al. Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data:application on French Guiana[J]. Remote Sens, 2016, 8(3):240.DOI:10.3390/rs8030240. |
[16] | LI J, HEAP A D, POTTER A, et al. Application of machine learning methods to spatial interpolation of environmental variables[J]. Environ Model Softw, 2011, 26(12):1647-1659.DOI:10.1016/j.envsoft.2011.07.004. |
[17] | DOS REIS A A, CARVALHO M C, DE MELLO J M, et al. Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data:an assessment of prediction methods[J]. N Z J For Sci, 2018, 48:1.DOI:10.1186/s40490-017-0108-0. |
[18] | CHEN L, WANG Y Q, REN C Y, et al. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging[J]. For Ecol Manag, 2019, 447:12-25.DOI:10.1016/j.foreco.2019.05.057. |
[19] | SILVEIRA E M O, SILVA S H G, ACERBI-JUNIOR F W, et al. Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment[J]. Int J Appl Earth Obs Geoinformation, 2019, 78:175-188.DOI:10.1016/j.jag.2019.02.004. |
[20] | QIN Q Q, WANG H Y, LEI X D, et al. Spatial variability in the amount of forest litter at the local scale in northeastern China: Kriging and co-Kriging approaches to interpolation[J]. Ecol Evol, 2020, 10(2):778-790.DOI:10.1002/ece3.5934. |
[21] | CHATTERJEE S, SANTRA P, MAJUMDAR K, et al. Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India[J]. Environ Monit Assess, 2015, 187(4):183.DOI:10.1007/s10661-015-4414-9. |
[22] | 卢月明, 王亮, 仇阿根, 等. 一种基于主成分分析的协同克里金插值方法[J]. 测绘通报, 2017(11):51-57,63. |
LU Y M, WANG L, QIU A G, et al. A co-Kriging interpolation method based on principal component analysis[J]. Bull Surv Mapp, 2017(11):51-57, 63.DOI:10.13474/j.cnki.11-2246.2017.0347. | |
[23] | SHEN W J, LI M S, HUANG C Q, et al. Quantifying live aboveground biomass and forest disturbance of mountainous natural and plantation forests in northern Guangdong,China,based on multi-temporal Landsat,PALSAR and field plot data[J]. Remote Sens, 2016, 8(7):595.DOI:10.3390/rs8070595. |
[24] | LU D S, CHEN Q, WANG G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. Int J Digit Earth, 2016, 9(1):63-105.DOI:10.1080/17538947.2014.990526. |
[25] | AVTAR R, SAWADA H, TAKEUCHI W, et al. Characterization of forests and deforestation in Cambodia using ALOS/PALSAR observation[J]. Geocarto Int, 2012, 27(2):119-137.DOI:10.1080/10106049.2011.626081. |
[26] | 宋茜, 范文义. 大兴安岭植被生物量的ALOS PALSAR估算[J]. 应用生态学报, 2011, 22(2):303-308. |
SONG Q, FAN W Y. ALOS PALSAR estimation of vegetation biomass in Daxing’anling Region[J]. Chin J Appl Ecol, 2011, 22(2):303-308.DOI:10.13287/j.1001-9332.2011.0074. | |
[27] | 王璟睿, 沈文娟, 李卫正, 等. 基于RapidEye的人工林生物量遥感反演模型性能对比[J]. 西北林学院学报, 2015, 30(6): 196-202. |
WANG J R, SHEN W J, LI W Z, et al. Performances comparison of multiple non-linear models for estimating plantations’ biomass based on RapidEye imagery[J]. J Northwest For Univ, 2015, 30(6):196-202.DOI: 10.3969/j.issn.1001-7461.2015.06.36. | |
[28] | 杜虎, 曾馥平, 王克林, 等. 中国南方3种主要人工林生物量和生产力的动态变化[J]. 生态学报, 2014, 34(10):2712-2724. |
DU H, ZENG F P, WANG K L, et al. Dynamics of biomass and productivity of three major plantation types in southern China[J]. Acta Ecol Sin, 2014, 34(10):2712-2724.DOI:10.5846/stxb201212121788. | |
[29] | 李明诗, 谭莹, 潘洁, 等. 结合光谱、纹理及地形特征的森林生物量建模研究[J]. 遥感信息, 2006(6):6-9,66. |
LI M S, TAN Y, PAN J, et al. Modeling forest aboveground biomass by combining the spectrum, textures with topographic features[J]. Remote Sens Inf, 2006(6):6-9, 66.DOI:10.3969/j.issn.1000-3177.2006.06.003. | |
[30] | 徐婷, 曹林, 佘光辉. 基于Landsat 8 OLI的特征变量优化提取及森林生物量反演[J]. 遥感技术与应用, 2015, 30(2):226-234. |
XU T, CAO L, SHE G H. Feature extraction and forest biomass estimation based on Landsat 8 OLI[J]. Remote Sens Technol Appl, 2015, 30(2):226-234. DOI:10.11873/j.issn.1004-0323.2015.2.0226. | |
[31] | ASLAN A, RAHMAN A F, WARREN M W, et al. Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data[J]. Remote Sens Environ, 2016, 183:65-81.DOI:10.1016/j.rse.2016.04.026.183:65-81. |
[32] | ISAAKS E H, SRIVASTAVA R M. An introduction to applied geostatistics[M]. Oxford: Oxford University Press,1989. |
[33] | SAKATA S, ASHIDA F, ZAKO M. An efficient algorithm for Kriging approximation and optimization with large-scale sampling data[J]. Comput Methods Appl Mech Eng, 2004, 193(3/5):385-404.DOI:10.1016/j.cma.2003.10.006. |
[34] | ZIMMERMAN D L, ZIMMERMAN M B. A comparison of spatial semivariogram estimators and corresponding ordinary Kriging predictors[J]. Technometrics, 1991, 33(1):77-91.DOI:10.1080/00401706.1991.10484771. |
[35] | 李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10):11-19. |
LI Y, ZHANG W F, CUI J B, et al. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. J Beijing For Univ, 2020, 42(10):11-19. | |
[36] | ZHAO P P, LU D S, WANG G X, et al. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data[J]. Int J Appl Earth Obs Geoinformation, 2016, 53:1-15.DOI:10.1016/j.jag.2016.08.007. |
[1] | TANG Yiren, JIA Weiwei, WANG Fan, SUN Yuman, ZHANG Ying. Constructing a biomass model of Larix olgensis primary branches based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 130-140. |
[2] | SUN Mingchen, JIANG Lichun. Standing volume prediction of Pinus sylvestris var. mongolica based on machine learning algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 31-37. |
[3] | DING Xiangyuan, CHEN Erxue, LI Zengyuan, ZHAO Lei, LIU Qingwang, XU Kunpeng. A review of remote sensing application in national forest inventory [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 1-12. |
[4] | WANG Tian, WANG Xuefeng, LIU Jiazheng. The prediction model of moisture content of young Aquilaria sinensis leaves based on RFE_RF algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 177-184. |
[5] | WU Jiong, JIANG Fugen, PENG Shaofeng, MA Kaisen, CHEN Song, SUN Hua. Estimating the tree height and yield of Camellia oleifera by combining crown volume [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 53-62. |
[6] | JU Yilin, JI Yongjie, HUANG Jimao, ZHANG Wangfei. Inversion of forest aboveground biomass using combination of LiDAR and multispectral data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 58-68. |
[7] | JI Yelin, SU Xiyou, YU Zhijun. Potential habitat prediction of Hyphantria cunea based on a random forest model in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 121-128. |
[8] | ZHAO Yinghui, ZHANG Dali, ZHEN Zhen. Individual tree species classification based on nonparametric classification algorithms and multi-source remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 103-112. |
[9] | WU Wenyue, YAO Shunbin, XU Zhiyang. Study on NPP of main forest types based on national forest inventory data in Jiangxi Province,China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 193-198. |
[10] | DU Xuehui, MENG Chun, LIU Meishuang. Research on feature selection based on single feature classification accuracy [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 109-116. |
[11] | YU Chao, SONG Liyi, LI Mingyang, Omidreza Shobairi SEYED, ZHANG Xiangyang. Spatio-temporal dynamics of forest aboveground biomass in Xixia County, Henan Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 93-101. |
[12] | ZHANG Mifang,HU Man,LI Mingyang. Estimation of stock volume of urban forest using fully polarimetric radar data of PALSAR [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(06): 56-62. |
[13] | LIU Haijuan, ZHANG Ting, SHI Hao, XU Yannan, WU Wenlong, Yu Peiling. Classification evaluation on high resolution remote sensing image based on RF [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(01): 99-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||