JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (5): 55-66.doi: 10.3969/j.issn.1000-2006.201912052
Previous Articles Next Articles
CHEN Wenwen(), WU Huaitong, CHEN Yingnan*()
Received:
2019-12-27
Revised:
2020-07-08
Online:
2020-10-30
Published:
2020-10-30
Contact:
CHEN Yingnan
E-mail:chenww@njfu.edu.cn;chenyingnan@njfu.edu.cn
CLC Number:
CHEN Wenwen, WU Huaitong, CHEN Yingnan. Gene duplications and functional divergence analyses of the SPL gene family[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 55-66.
Table 1
The SPL family members in A. thaliana, C. papaya, P. trichocarpa and V. vinifera"
基因名称 gene name | 基因号 gene ID | 染色体编号 chromosome No. | 染色体上位置/bp chromosome location | 蛋白质 长度/aa protein | 分子量/ku molecular weight | 等电点 pI | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
AtSPL1 | AT2G47070 | At2 | 19336653—19340869 | 881 | 98.46 | 5.55 | |||||
AtSPL2 | AT5G43270 | At5 | 17360287—17363678 | 450 | 46.86 | 8.85 | |||||
AtSPL3 | AT2G33810 | At2 | 14305001—14306072 | 131 | 15.30 | 8.23 | |||||
AtSPL4 | AT1G53160 | At1 | 19806263—19807705 | 174 | 20.12 | 9.69 | |||||
AtSPL5 | AT3G15270 | At3 | 5140365—5142323 | 181 | 20.99 | 9.82 | |||||
AtSPL6 | AT1G69170 | At1 | 26005068—26007368 | 405 | 45.95 | 7.60 | |||||
AtSPL7 | AT5G18830 | At5 | 6275990—6280567 | 801 | 89.62 | 6.39 | |||||
AtSPL8 | AT1G02065 | At1 | 365209—367443 | 333 | 36.83 | 9.01 | |||||
AtSPL9 | AT2G42200 | At2 | 17587169—17589671 | 375 | 40.85 | 8.40 | |||||
AtSPL10 | AT1G27370 | At1 | 9505115—9508542 | 396 | 44.16 | 7.94 | |||||
AtSPL11 | AT1G27360 | At1 | 9500894—9504023 | 393 | 43.86 | 8.35 | |||||
AtSPL12 | AT3G60030 | At3 | 22165580—22169984 | 927 | 104.14 | 5.85 | |||||
AtSPL13a | AT5G50570 | At5 | 20582083—20584547 | 359 | 39.11 | 8.03 | |||||
AtSPL13b | AT5G50670 | At5 | 20615565—20617538 | 359 | 39.11 | 8.03 | |||||
AtSPL14 | AT1G20980 | At1 | 7324471—7329441 | 1 035 | 114.81 | 8.71 | |||||
AtSPL15 | AT3G57920 | At3 | 21444243—21446035 | 354 | 39.67 | 9.11 | |||||
基因名称 gene name | 基因号 gene ID | 染色体编号 chromosome No. | 染色体上位置/bp chromosome location | 蛋白质 长度/aa protein | 分子量/ku molecular weight | 等电点 pI | |||||
AtSPL16 | AT1G76580 | At1 | 28734207—28738967 | 1020 | 113.39 | 8.87 | |||||
CpSPL1 | evm.TU.supercontig_1141.2 | CpC1141 | 11473—13538 | 207 | 23.26 | 9.15 | |||||
CpSPL2 | evm.TU.supercontig_146.32 | CpC146 | 148809—154539 | 1 008 | 112.30 | 7.32 | |||||
CpSPL3 | evm.TU.supercontig_149.10 | CpC149 | 245685—247462 | 320 | 35.63 | 8.79 | |||||
CpSPL4 | evm.TU.supercontig_149.2 | CpC149 | 88003—88868 | 202 | 22.39 | 9.20 | |||||
CpSPL5 | evm.TU.supercontig_27.40 | CpC27 | 414724—417409 | 145 | 16.45 | 6.53 | |||||
CpSPL6 | evm.TU.supercontig_2783.1 | CpC2783 | 2430—5568 | 282 | 31.35 | 9.08 | |||||
CpSPL7 | evm.TU.supercontig_36.105 | CpC36 | 809951—813921 | 950 | 105.69 | 7.04 | |||||
CpSPL8 | evm.TU.supercontig_43.66 | CpC43 | 758193—759844 | 388 | 42.58 | 8.98 | |||||
CpSPL9 | evm.TU.supercontig_6.327 | CpC6 | 2370660—2371893 | 192 | 22.51 | 8.64 | |||||
CpSPL10 | evm.TU.supercontig_80.88 | CpC80 | 637827—638584 | 187 | 20.88 | 9.17 | |||||
PtSPL1 | Potri.010G154000 | Pt10 | 16159112—16166168 | 1 030 | 114.79 | 8.13 | |||||
PtSPL2 | Potri.002G002400 | Pt2 | 156428—162756 | 1 073 | 119.09 | 8.53 | |||||
PtSPL3 | Potri.010G026200 | Pt10 | 3686616—3693619 | 782 | 87.60 | 6.49 | |||||
PtSPL4 | Potri.008G197000 | Pt8 | 13768389—13775909 | 793 | 88.91 | 6.43 | |||||
PtSPL5 | Potri.008G098600 | Pt8 | 6182044—6189608 | 1 035 | 115.39 | 7.30 | |||||
PtSPL6 | Potri.014G114300 | Pt14 | 8925158—8931521 | 1 004 | 111.26 | 6.13 | |||||
PtSPL7 | Potri.002G188700 | Pt2 | 14848271—14855347 | 974 | 108.03 | 5.85 | |||||
PtSPL8 | Potri.002G142400 | Pt2 | 10555550—10558359 | 398 | 43.78 | 8.53 | |||||
PtSPL9 | Potri.005G258700 | Pt5 | 25772985—25779306 | 1 072 | 118.59 | 8.14 | |||||
PtSPL11 | Potri.003G172600 | Pt3 | 18214192—18218896 | 391 | 43.15 | 9.48 | |||||
PtSPL12 | Potri.008G097900 | Pt8 | 6119874—6124808 | 510 | 55.87 | 7.25 | |||||
PtSPL13 | Potri.010G154300 | Pt10 | 16207800—16212101 | 498 | 54.54 | 7.87 | |||||
PtSPL14 | Potri.015G098900 | Pt15 | 11818906—11822200 | 381 | 41.81 | 8.68 | |||||
PtSPL15 | Potri.012G100700 | Pt12 | 12588839—12592476 | 330 | 36.48 | 8.68 | |||||
PtSPL16 | Potri.011G055900 | Pt11 | 4906262—4910399 | 144 | 16.19 | 6.53 | |||||
PtSPL17 | Potri.016G048500 | Pt16 | 3078331—3082574 | 382 | 41.03 | 9.03 | |||||
PtSPL18 | Potri.001G058600 | Pt1 | 4478280—4482221 | 376 | 41.28 | 9.30 | |||||
PtSPL19 | Potri.001G055900 | Pt1 | 4224329—4230450 | 446 | 49.01 | 8.67 | |||||
PtSPL20 | Potri.001G398200 | Pt1 | 41919369—41921507 | 244 | 27.43 | 9.07 | |||||
PtSPL21 | Potri.002G142200 | Pt2 | 10545894—10548075 | 325 | 36.13 | 9.11 | |||||
PtSPL22 | Potri.003G169400 | Pt3 | 17943899—17947848 | 313 | 34.23 | 9.23 | |||||
PtSPL23 | Potri.004G046700 | Pt4 | 3572260—3574124 | 148 | 16.47 | 7.60 | |||||
PtSPL24 | Potri.007G138800 | Pt7 | 15022763—15026218 | 202 | 22.71 | 9.49 | |||||
PtSPL25 | Potri.011G116800 | Pt11 | 14192309—14194697 | 242 | 27.24 | 8.93 | |||||
PtSPL26 | Potri.014G057700 | Pt14 | 4451810—4454523 | 328 | 36.45 | 8.85 | |||||
PtSPL27 | Potri.014G057800 | Pt14 | 4465308—4468876 | 408 | 45.20 | 6.81 | |||||
PtSPL28 | Potri.015G060400 | Pt15 | 8281357—8286119 | 561 | 61.61 | 8.39 | |||||
PtSPL29 | Potri.018G149900 | Pt18 | 16797089—16803132 | 472 | 51.72 | 8.58 | |||||
VvSBP1 | GSVIVT01012247001 | Vv1 | 230334—235218 | 498 | 55.06 | 8.42 | |||||
VvSBP2 | GSVIVT01010496001 | Vv1 | 21064305—21071687 | 418 | 45.94 | 8.96 | |||||
VvSBP3 | GSVIVT01010522001 | Vv1 | 21412776—21417820 | 421 | 46.18 | 8.48 | |||||
VvSBP4 | GSVIVT01003836001 | Vv4 | 20536349—20537931 | 207 | 24.34 | 5.98 | |||||
VvSBP5 | GSVIVT01017678001 | Vv5 | 2565343—2574143 | 980 | 109.55 | 7.98 | |||||
VvSBP6 | GSVIVT01017835001 | Vv5 | 3885149—3896071 | 692 | 77.30 | 8.08 | |||||
VvSBP7 | GSVIVT01028208001 | Vv7 | 4628142—4637596 | 860 | 96.05 | 6.03 | |||||
VvSBP8 | GSVIVT01033519001 | Vv8 | 20046489—20051103 | 349 | 37.83 | 9.06 | |||||
VvSBP9 | GSVIVT01021087001 | Vv10 | 1346397—1348752 | 140 | 15.72 | 8.23 | |||||
VvSBP10 | GSVIVT01032239001 | Vv11 | 13588595—13606856 | 326 | 36.70 | 9.47 | |||||
VvSBP11 | GSVIVT01020578001 | Vv12 | 4108297—4110237 | 169 | 19.19 | 9.17 | |||||
VvSBP12 | GSVIVT01033064001 | Vv14 | 25486818—25489754 | 378 | 42.11 | 8.74 | |||||
VvSBP13 | GSVIVT01018205001 | Vv15 | 13245041—13249262 | 404 | 44.85 | 7.04 | |||||
VvSBP14 | GSVIVT01018204001 | Vv15 | 13256865—13259160 | 388 | 43.51 | 8.58 | |||||
VvSBP15 | GSVIVT01008556001 | Vv17 | 904847—907405 | 377 | 41.17 | 7.24 | |||||
VvSBP16 | XM_002265167.1 | Vv17 | 5505520—5513472 | 557 | 61.08 | 6.72 | |||||
VvSBP17 | GSVIVT01013452001 | Vv18 | 347645—353985 | 921 | 102.27 | 8.82 | |||||
VvSBP18 | GSVIVT01014302001 | Vv19 | 2484297—2485658 | 204 | 22.68 | 8.57 |
Table 2
Paralogous and orthologous SPL gene pairs and their Ka/Ks values"
相似性类型 type | 基因对gene pair | Ka | Ks | Ka/Ks | 相似性类型 type | 基因对gene pair | Ka | Ks | Ka/Ks |
---|---|---|---|---|---|---|---|---|---|
旁系同源 paralogous | AtSPL4-AtSPL5 | 0.153 8 | 0.570 7 | 0.269 5 | 直系同源 orthologous | AtSPL5-CpSPL10 | 0.307 6 | 1.771 8 | 0.173 6 |
AtSPL9-AtSPL15 | 0.269 1 | 0.880 4 | 0.305 6 | AtSPL5-PtSPL20 | 0.355 0 | 1.512 0 | 0.234 8 | ||
AtSPL14-AtSPL16 | 0.151 3 | 0.663 6 | 0.228 1 | AtSPL6-PtSPL12 | 0.561 6 | 1.878 3 | 0.299 0 | ||
PtSPL1-PtSPL5 | 0.065 6 | 0.225 7 | 0.290 8 | AtSPL6-VvSBP1 | 0.533 5 | 1.465 4 | 0.364 1 | ||
PtSPL1-PtSPL6 | 0.280 3 | 1.077 4 | 0.260 2 | AtSPL7-PtSPL4 | 0.382 2 | 2.101 8 | 0.181 9 | ||
PtSPL5-PtSPL6 | 0.281 5 | 1.265 9 | 0.222 4 | AtSPL7-VvSBP6 | 0.396 9 | 1.963 5 | 0.202 2 | ||
PtSPL6-PtSPL7 | 0.051 5 | 0.243 5 | 0.211 6 | AtSPL9-PtSPL17 | 0.451 3 | 3.362 8 | 0.134 2 | ||
PtSPL2-PtSPL9 | 0.064 6 | 0.264 8 | 0.244 1 | AtSPL13b-PtSPL14 | 0.449 8 | 2.521 1 | 0.178 4 | ||
PtSPL3-PtSPL4 | 0.083 1 | 0.222 3 | 0.373 9 | AtSPL13b-VvSBP15 | 0.456 1 | 2.284 4 | 0.199 6 | ||
PtSPL8-PtSPL27 | 0.071 5 | 0.284 9 | 0.250 9 | AtSPL14-PtSPL9 | 0.285 1 | 1.545 8 | 0.184 4 | ||
PtSPL11-PtSPL19 | 0.118 5 | 0.248 6 | 0.476 7 | AtSPL14-VvSBP17 | 0.264 2 | 2.262 2 | 0.116 8 | ||
PtSPL12-PtSPL13 | 0.100 3 | 0.236 6 | 0.424 1 | PtSPL4-VvSBP6 | 0.251 4 | 1.305 1 | 0.192 6 | ||
PtSPL14-PtSPL15 | 0.112 2 | 0.300 9 | 0.373 0 | PtSPL5-VvSBP5 | 0.196 3 | 1.074 1 | 0.182 7 | ||
PtSPL16-PtSPL23 | 0.114 3 | 0.258 1 | 0.442 9 | PtSPL7-VvSBP7 | 0.147 3 | 0.909 5 | 0.161 9 | ||
PtSPL18-PtSPL22 | 0.061 6 | 0.178 4 | 0.345 2 | PtSPL9-VvSBP17 | 0.142 4 | 0.795 0 | 0.179 1 | ||
PtSPL20-PtSPL25 | 0.078 3 | 0.342 8 | 0.228 4 | PtSPL12-VvSBP1 | 0.325 9 | 0.966 0 | 0.337 4 | ||
PtSPL21-PtSPL26 | 0.074 9 | 0.315 1 | 0.237 6 | PtSPL17-VvSBP8 | 0.186 6 | 0.888 4 | 0.210 0 | ||
直系同源 orthologous | AtSPL1-PtSPL7 | 0.235 8 | 1.487 9 | 0.158 5 | PtSPL18-VvSBP3 | 0.249 5 | 1.041 9 | 0.239 4 | |
AtSPL1-VvSBP7 | 0.246 3 | 1.285 5 | 0.191 6 | PtSPL19-VvSBP2 | 0.301 7 | 0.618 0 | 0.488 2 | ||
AtSPL3-PtSPL23 | 0.295 2 | 3.819 8 | 0.077 3 | PtSPL20-CpSPL10 | 0.235 2 | 1.414 5 | 0.166 3 | ||
AtSPL3-VvSBP9 | 0.307 8 | 0 | - | PtSPL24-VvSBP11 | 0.172 7 | 1.230 7 | 0.140 3 | ||
AtSPL4-VvSBP11 | 0.365 8 | 3.008 3 | 0.121 6 | CpSPL10-VvSBP18 | 0.296 0 | 1.978 3 | 0.149 6 |
Table 4
Summary of SPL gene functions and GO annotations"
项目 item | 基因名称 gene name | 注释anmotation |
---|---|---|
功能 function | AtSPL1 | 生殖期花序的耐热性[ |
AtSPL2 | 植物营养生长时相转变;营养生长向生殖生长转变;花器官发育;植物生育力;负调控植株耐热性[ | |
AtSPL3 | 成花诱导;过表达促进开花[ | |
AtSPL4 | 成花诱导[ | |
AtSPL5 | 成花诱导[ | |
AtSPL6 | 正调控部分防御基因,提高抗病性[ | |
AtSPL7 | 铜稳态调控[ | |
AtSPL8 | 花粉囊发育;赤霉素生物合成和信号转导;植物生育力[ | |
AtSPL9 | 植物营养生长时相转变;营养生长向生殖生长转变;毛状体分布;负调控叶片生长速率;负调控花色素苷合成;调节活性氧的累积和免疫反应;负调控植株耐热性[ | |
AtSPL10 | 叶片形态;生殖期芽的成熟;早期胚胎发生过程中的细胞分化;抑制侧根生长;根分生组织活性和根衍生的新芽再生[ | |
AtSPL11 | 早期胚胎发生过程中的细胞分化;叶片形态;生殖期芽的成熟;负调控植株耐热性[ | |
AtSPL12 | 生殖期花序的耐热性[ | |
AtSPL13a/b | 植物营养生长时相转变;营养生长向生殖生长转变;调控发芽后子叶到营养叶阶段的过渡[ | |
AtSPL14 | 对真菌毒素伏马菌素B1敏感;延缓植物幼年到成年阶段的过渡[ | |
AtSPL15 | 植物营养生长时相转变;营养生长向生殖生长转变;成花诱导;负调控叶片生长速率[ | |
CpSPL5 | 调节果实软化和类胡萝卜累积[ | |
PtSPL3/4 | 基因表达量不受Cu离子浓度影响,可能参与杨树铜稳态调控[ | |
VvSBP5 | 响应葡萄白粉病[ | |
VvSBP11 | 成花转变,叶片发育[ | |
VvSBP16 | 提高植株的耐旱性和耐盐性[ | |
GO注释 GO annotation | AtSPL16 | 细胞膜成分(GO:0005886);细胞核成分(GO:0005634);DNA结合(GO:0003677);金属离子结合(GO:0046872);转录调控(GO:0044212;GO:0003700;GO:0006355) |
CpSPL1 | 细胞核成分(GO:0005634);DNA结合(GO:0003677) | |
CpSPL2 | 细胞大分子代谢过程(GO:0044260);ATP结合(GO:0005524);蛋白质酪氨酸激酶活性(GO:0004713);DNA结合(GO:0003677);蛋白质磷酸化(GO:0006468)细胞核成分(GO:0005634) | |
CpSPL3/4/6 | 细胞核成分(GO:0005634);DNA结合(GO:0003677) | |
CpSPL7 | 解旋酶活性(GO:0008026);核酸结合(GO:0003676);蛋白激酶活性(GO:0004672);DNA结合(GO:0003677)ATP结合(GO:0005524);蛋白质磷酸化(GO:0006468);细胞核成分(GO:0005634) | |
CpSPL8-10 | 细胞核成分(GO:0005634);DNA结合(GO:0003677) | |
PtSPL1/2 PtSPL5-29 | 细胞核成分(GO:0005634);DNA结合(GO:0003677) | |
VvSBP1 | 细胞核成分(GO:0005634);转录调控(GO:0003700; GO:0006355) | |
VvSBP6 | 铜离子稳态(GO:0055070);根毛细胞分化(GO:0048765);毛状体细胞形态发生(GO:0010090);细胞核成分(GO:0005634)分生组织从营养到生殖的相变(GO:0010228);转录调控(GO:0006355; GO:0003700) | |
VvSBP7 | 调节蛋白质定位(GO:0032880);细胞核成分(GO:0005634);过氧化氢分解过程(GO:0042744);转录调控(GO:0003700;GO:0006355) | |
VvSBP8 | 促进分生组织从营养到生殖的相变(GO:0010228);DNA转录因子活性(GO:0003700);细胞核成分(GO:0005634);叶片发育(GO:0048366;GO:2000025);花药发育(GO:0048653) | |
VvSBP9 | 转录调控(GO:0003700; GO:0006355);细胞核成分(GO:0005634);调控营养相变(GO:0010321) | |
VvSBP10 | 花药发育(GO:0048653);从营养期到生殖期过渡时间的调节(GO:0048510);细胞核成分(GO:0005634);转录调控(GO:0003700;GO:0006355) | |
VvSBP12 | 花药发育(GO:0048653);转录调控(GO:0003700;GO:0006355);细胞核成分(GO:0005634) | |
VvSBP14 | 小孢子发生(GO:0009556);大孢子发生(GO:0009554);花药发育(GO:0048653);DNA结合(GO:0003677);细胞核成分(GO:0005634) | |
VvSBP15 | 花药发育(GO:0048653);DNA结合(GO:0003677);细胞核成分(GO:0005634) | |
VvSBP17 | 对细菌的防御反应(GO:0042742);转录调控(GO:0045893; GO:0003700);细胞核成分(GO:0005634) | |
VvSBP2-4 VvSBP13/18 | 未检索到GO注释 |
[1] |
KLEIN J, SAEDLER H, HUIJSER P . A new family of DNA binding proteins includes putative transcriptional regulators of the Anthirrhinum majus floral meristem identity gene SQUAMOSA[J]. Mol Gen Genet MGG, 1996,250(1):7-16. DOI: 10.1007/BF02191820.
doi: 10.1007/BF02191820 pmid: 8569690 |
[2] |
CARDON G, HÖHMANN S, KLEIN J , et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene, 1999,237(1):91-104. DOI: 10.1016/S0378-1119(99)00308-X.
doi: 10.1016/s0378-1119(99)00308-x pmid: 10524240 |
[3] |
YAMASAKI K, KIGAWA T, INOUE M , et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. J Mol Biol, 2004,337(1):49-63. DOI: 10.1016/j.jmb.2004.01.015.
doi: 10.1016/j.jmb.2004.01.015 pmid: 15001351 |
[4] |
NODINE M D, BARTEL D P . MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis[J]. Genes Dev, 2010,24(23):2678-2692. DOI: 10.1101/gad.1986710.
doi: 10.1101/gad.1986710 pmid: 21123653 |
[5] |
WANG J W, SCHWAB R, CZECH B , et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana[J]. Plant Cell, 2008,20(5):1231-1243. DOI: 10.1105/tpc.108.058180.
doi: 10.1105/tpc.108.058180 pmid: 18492871 |
[6] | WU G, POETHIG R S . Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Dev (Camb Engl), 2006,133(18):3539-3547. DOI: 10.1242/dev.02521. |
[7] |
WU G, PARK M Y, CONWAY S R , et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009,138(4):750-759. DOI: 10.1016/j.cell.2009.06.031.
doi: 10.1016/j.cell.2009.06.031 pmid: 19703400 |
[8] |
WANG J W, PARK M Y, WANG L J , et al. MiRNA control of vegetative phase change in trees[J]. PLoS Genet, 2011,7(2):e1002012. DOI: 10.1371/journal.pgen.1002012.
doi: 10.1371/journal.pgen.1002012 pmid: 21383862 |
[9] |
XU M L, HU T Q, ZHAO J F , et al. Developmental functions of miR156-regulated SQUAMOSA promoter binding protein-like (SPL) genes in Arabidopsis thaliana[J]. PLoS Genet, 2016,12(8):e1006263. DOI: 10.1371/journal.pgen.1006263.
doi: 10.1371/journal.pgen.1006263 pmid: 27541584 |
[10] |
UNTE U S, SORENSEN A M, PESARESI P , et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell, 2003,15(4):1009-1019. DOI: 10.1105/tpc.010678.
doi: 10.1105/tpc.010678 pmid: 12671094 |
[11] | 田晶, 赵雪媛, 谢隆聖 , 等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2018,42(3):159-166. |
TIAN J, ZHAO X Y, XIE L S , et al. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development[J]. J Nanjing For Univ (Nat Sci Ed), 2018,42(3):159-166. DOI: 10.3969/j.issn.1000-2006.201708015. | |
[12] |
MANNING K, TÖR M, POOLE M , et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nat Genet, 2006,38(8):948-952. DOI: 10.1038/ng1841.
doi: 10.1038/ng1841 pmid: 16832354 |
[13] |
ZHANG Y, SCHWARZ S, SAEDLER H , et al. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J]. Plant Mol Biol, 2007,63(3):429-439. DOI: 10.1007/s11103-006-9099-6.
doi: 10.1007/s11103-006-9099-6 |
[14] |
RIESE M, ZOBELL O, SAEDLER H , et al. SBP-domain transcription factors as possible effectors of cryptochrome-mediated blue light signalling in the moss Physcomitrella patens[J]. Planta, 2008,227(2):505-515.DOI: 10.1007/s00425-007-0661-5.
doi: 10.1007/s00425-007-0661-5 |
[15] |
GOU J Y, FELIPPES F F, LIU C J , et al. Negative regulation of anthocyanin biosynjournal in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011,23(4):1512-1522. DOI: 10.1105/tpc.111.084525.
doi: 10.1105/tpc.111.084525 |
[16] |
PADMANABHAN M S, MA S S, BURCH-SMITH T M , et al. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity[J]. PLoS Pathog, 2013,9(3):e1003235. DOI: 10.1371/journal.ppat.1003235.
doi: 10.1371/journal.ppat.1003235 pmid: 23516366 |
[17] |
CHAO L M, LIU Y Q, CHEN D Y , et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage[J]. Mol Plant, 2017,10(5):735-748. DOI: 10.1016/j.molp.2017.03.010.
doi: 10.1016/j.molp.2017.03.010 pmid: 28400323 |
[18] |
INNAN H, KONDRASHOV F . The evolution of gene duplications: classifying and distinguishing between models[J]. Nat Rev Genet, 2010,11(2):97-108. DOI: 10.1038/nrg2689.
doi: 10.1038/nrg2689 pmid: 20051986 |
[19] |
FREELING M . Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition[J]. Annu Rev Plant Biol, 2009,60:433-453. DOI: 10.1146/annurev.arplant.043008.092122.
doi: 10.1146/annurev.arplant.043008.092122 pmid: 19575588 |
[20] |
CONANT G C, WOLFE K H . Turning a hobby into a job: how duplicated genes find new functions[J]. Nat Rev Genet, 2008,9(12):938-950. DOI: 10.1038/nrg2482.
doi: 10.1038/nrg2482 pmid: 19015656 |
[21] |
孙红正, 葛颂 . 重复基因的进化: 回顾与进展[J]. 植物学报, 2010,45(1):13-22.
doi: 10.3969/j.issn.1674-3466.2010.01.002 |
SUN H Z, GE S . Review of the evolution of duplicated genes[J]. Chin Bull Bot, 2010,45(1):13-22. DOI: 10.3969/j.issn.1674-3466.2010.01.002. | |
[22] |
GUO A Y, ZHU Q H, GU X C , et al. Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family[J]. Gene, 2008,418(1/2):1-8. DOI: 10.1016/j.gene.2008.03.016.
doi: 10.1016/j.gene.2008.03.016 |
[23] |
PRESTON J C, HILEMAN L C . Functional evolution in the plant SQUAMOSA-promoter binding protein-like (SPL) gene family[J]. Front Plant Sci, 2013,4:80. DOI: 10.3389/fpls.2013.00080.
doi: 10.3389/fpls.2013.00080 pmid: 23577017 |
[24] |
FAWCETT J A, MAERE S, VAN DE PEER Y . Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event[J]. Proc Natl Acad Sci USA, 2009,106(14):5737-5742. DOI: 10.1073/pnas.0900906106.
doi: 10.1073/pnas.0900906106 pmid: 19325131 |
[25] |
LOZANO R, HAMBLIN M T, PROCHNIK S , et al. Identification and distribution of the NBS-LRR gene family in the Cassava genome[J]. BMC Genom, 2015,16(1):1-14. DOI: 10.1186/s12864-015-1554-9.
doi: 10.1186/1471-2164-16-1 |
[26] |
ZHAO P, WANG D D, WANG R Q , et al. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress[J]. BMC Genom, 2018,19(1):1-13. DOI: 10.1186/s12864-018-4443-1.
doi: 10.1186/s12864-017-4368-0 |
[27] |
XIE T, CHEN C J, LI C H , et al. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress[J]. BMC Genom, 2018,19(1):1-18. DOI: 10.1186/s12864-018-4880-x.
doi: 10.1186/s12864-017-4368-0 |
[28] |
LI C L, LU S F . Molecular characterization of the SPL gene family in Populus trichocarpa[J]. BMC Plant Biol, 2014,14(1):1-15. DOI: 10.1186/1471-2229-14-131.
doi: 10.1186/1471-2229-14-1 |
[29] | LEE T H, TANG H B, WANG X Y , et al. PGDD: a database of gene and genome duplication in plants[J]. Nucleic Acids Res, 2013,41(D1):1152-1158. DOI: DOI 10.1093/nar/gks1104. |
[30] |
GUO L H, CHEN Y N, YE N , et al. Differential retention and expansion of the ancestral genes associated with the paleopolyploidies in modern rosid plants, as revealed by analysis of the extensins super-gene family[J]. BMC Genom, 2014,15(1):1-13. DOI: 10.1186/1471-2164-15-612.
doi: 10.1186/1471-2164-15-1 |
[31] |
GU Z L, CAVALCANTI A, CHEN F C , et al. Extent of gene duplication in the genomes of drosophila, nematode, and yeast[J]. Mol Biol Evol, 2002,19(3):256-262. DOI: 10.1093/oxfordjournals.molbev.a004079.
doi: 10.1093/oxfordjournals.molbev.a004079 pmid: 11861885 |
[32] |
YANG S H, ZHANG X H, YUE J X , et al. Recent duplications dominate NBS-encoding gene expansion in two woody species[J]. Mol Genet Genom, 2008,280(3):187-198. DOI: 10.1007/s00438-008-0355-0.
doi: 10.1007/s00438-008-0355-0 |
[33] |
WANG L Q, GUO K, LI Y , et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice[J]. BMC Plant Biol, 2010,10(1):1-16. DOI: 10.1186/1471-2229-10-282.
doi: 10.1186/1471-2229-10-1 |
[34] |
HOU H M, LI J, GAO M , et al. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape[J]. PLoS One, 2013,8(3):e59358. DOI: 10.1371/journal.pone.0059358.
doi: 10.1371/journal.pone.0059358 pmid: 23527172 |
[35] |
LIANG G, LI Y, HE H , et al. Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya[J]. Planta, 2013,238(4):739-752. DOI: 10.1007/s00425-013-1929-6.
doi: 10.1007/s00425-013-1929-6 |
[36] |
BLANC G, WOLFE K H . Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J]. Plant Cell, 2004,16(7):1667-1678. DOI: 10.1105/tpc.021345.
doi: 10.1105/tpc.021345 pmid: 15208399 |
[37] |
TANG H, BOWERS J E, WANG X , et al. Synteny and collinearity in plant genomes[J]. Science, 2008,320(5875):486-488. DOI: 10.1126/science.1153917.
doi: 10.1126/science.1153917 pmid: 18436778 |
[38] |
RIZZON C, PONGER L, GAUT B S . Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice[J]. PLoS Comput Biol, 2006,2(9):e115. DOI: 10.1371/journal.pcbi.0020115.
doi: 10.1371/journal.pcbi.0020115 pmid: 16948529 |
[39] |
HANADA K, ZOU C, LEHTI-SHIU M D , et al. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli[J]. Plant Physiol, 2008,148(2):993-1003. DOI: 10.1104/pp.108.122457.
doi: 10.1104/pp.108.122457 pmid: 18715958 |
[40] |
BOWERS J E, CHAPMAN B A, RONG J , et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature, 2003,422(6930):433. DOI: 10.1038/nature01521.
doi: 10.1038/nature01521 pmid: 12660784 |
[41] |
MORENO-HAGELSIEB G, LATIMER K . Choosing BLAST options for better detection of orthologs as reciprocal best hits[J]. Bioinformatics, 2008,24(3):319-324. DOI: 10.1093/bioinformatics/btm585.
doi: 10.1093/bioinformatics/btm585 pmid: 18042555 |
[42] |
HOU H M, YAN X X, SHA T , et al. The SBP-box gene VpSBP11 from Chinese wild Vitis is involved in floral transition and affects leaf development[J]. Int J Mol Sci, 2017,18(7):1493. DOI: 10.3390/ijms18071493.
doi: 10.3390/ijms18071493 |
[43] |
CHEN Z, RAO P, YANG X Y , et al. A global view of transcriptome dynamics during male floral bud development in Populus tomentosa[J]. Sci Rep, 2018,8(1):1-15. DOI: 10.1038/s41598-017-18084-5.
doi: 10.1038/s41598-017-17765-5 pmid: 29311619 |
[44] |
SCHULTEN A, BYTOMSKI L, QUINTANA J , et al. Do Arabidopsis squamosa promoter binding protein-like genes act together in plant acclimation to copper or zinc deficiency[J]? Plant Direct, 2019, 3(7): span. DOI: 10.1002/pld3.150.
pmid: 31276083 |
[45] |
YAMASAKI H, HAYASHI M, FUKAZAWA M , et al. SQUAMOSA promoter binding protein-Like7 is a central regulator for copper homeostasis in Arabidopsis[J]. Plant Cell, 2009,21(1):347-361. DOI: 10.1105/tpc.108.060137.
doi: 10.1105/tpc.108.060137 pmid: 19122104 |
[46] | LU S, YANG C M, CHIANG V L . Conservation and diversity of microRNA-associated copper-regulatory networks in Populus trichocarpa[J]. F J Integr Plant Biol, 2011,53(11):879-891. DOI: 10.1111/j.1744-7909.2011.01080.x. |
[47] |
HYUN Y, RICHTER R, COUPLAND G . Competence to flower: age-controlled sensitivity to environmental cues[J]. Plant Physiol, 2017,173(1):36-46. DOI: 10.1104/pp.16.01523.
doi: 10.1104/pp.16.01523 pmid: 27920161 |
[48] |
WANG Z S, WANG Y, KOHALMI S E , et al. SQUAMOSA promoter binding protein-line 2 controls floral organ development and plant fertility by activating Asymmetric leaves 2 in Arabidopsis thaliana[J]. Plant Mol Biol, 2016,92(6):661-674. DOI: 10.1007/s11103-016-0536-x.
doi: 10.1007/s11103-016-0536-x pmid: 27605094 |
[49] |
STIEF A, ALTMANN S, HOFFMANN K , et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. Plant Cell, 2014,26(4):1792-1807. DOI: 10.1105/tpc.114.123851.
doi: 10.1105/tpc.114.123851 |
[50] |
GANDIKOTA M, BIRKENBIHL R P, HÖHMANN S , et al. The miRNA156/157 recognition element in the 3'UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. Plant J, 2007,49(4):683-693. DOI: 10.1111/j.1365-313X.2006.02983.x.
doi: 10.1111/j.1365-313X.2006.02983.x pmid: 17217458 |
[51] |
KIM J J, LEE J H, KIM W , et al. The microRNA156-SQUAMOSA promoter binding protein-like3 module regulates ambient temperature-responsive flowering via flowering locus T in Arabidopsis[J]. Plant Physiol, 2012,159(1):461-478. DOI: 10.1104/pp.111.192369.
doi: 10.1104/pp.111.192369 |
[52] |
XING S P, SALINAS M, GARCIA-MOLINA A , et al. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning[J]. Plant J, 2013,75(4):566-577. DOI: 10.1111/tpj.12221.
doi: 10.1111/tpj.12221 |
[53] |
XING S P, SALINAS M HÖHMANN S , et al. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis[J]. Plant Cell, 2010,22(12):3935-3950. DOI: 10.1105/tpc.110.079343.
doi: 10.1105/tpc.110.079343 pmid: 21177480 |
[54] |
ZHANG H, ZHANG L, HAN J Y , et al. The nuclear localization signal is required for the function of Squamosa promoter binding protein-like gene 9 to promote vegetative phase change in Arabidopsis[J]. Plant Mol Biol, 2019,100(6):571-578. DOI: 10.1007/s11103-019-00863-5.
doi: 10.1007/s11103-019-00863-5 pmid: 30953277 |
[55] |
CUI L G, SHAN J X, SHI M , et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J]. Plant J, 2014,80(6):1108-1117. DOI: 10.1111/tpj.12712.
doi: 10.1111/tpj.12712 |
[56] |
YU N, CAI W J, WANG S C , et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana[J]. Plant Cell, 2010,22(7):2322-2335. DOI: 10.1105/tpc.109.072579.
doi: 10.1105/tpc.109.072579 pmid: 20622149 |
[57] |
YIN H B, HONG G J, LI L Y , et al. miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana[J]. Phytopathology, 2019,109(4):632-642. DOI: 10.1094/PHYTO-08-18-0306-R.
doi: 10.1094/PHYTO-08-18-0306-R pmid: 30526361 |
[58] |
SCHWARZ S, GRANDE A V, BUJDOSO N , et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Mol Biol, 2008,67(1/2):183-195. DOI: 10.1007/s11103-008-9310-z.
doi: 10.1007/s11103-008-9310-z |
[59] |
SHIKATA M, KOYAMA T, MITSUDA N , et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant Cell Physiol, 2009,50(12):2133-2145. DOI: 10.1093/pcp/pcp148.
doi: 10.1093/pcp/pcp148 pmid: 19880401 |
[60] |
YU N, NIU Q W, NG K H , et al. The role of miR156/SPLs modules in Arabidopsis lateral root development[J]. Plant J, 2015,83(4):673-685. DOI: 10.1111/tpj.12919. DOI 10.1111/tpj.12919.
doi: 10.1111/tpj.12919 pmid: 26096676 |
[61] |
BARRERA-ROJAS C H, ROCHA G H B, POLVERARI L , et al. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses[J]. J Exp Bot, 2020,71(3):934-950. DOI: 10.1093/jxb/erz475.
doi: 10.1093/jxb/erz475 pmid: 31642910 |
[62] |
MARTIN R C, ASAHINA M, LIU P , et al. The regulation of post-germinative transition from the Cotyledon-to vegetative-leaf stages by microRNA-targeted SQUAMOSA promoter-binding protein like 13 in Arabidopsis[J]. Seed Sci Res, 2010,20(2):89-96. DOI: 10.1017/S0960258510000073.
doi: 10.1017/S0960258510000073 |
[63] |
STONE J M, LIANG X W, NEKL E R , et al. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1[J]. Plant J, 2005,41(5):744-754. DOI: 10.1111/j.1365-313X.2005.02334.x.
doi: 10.1111/j.1365-313X.2005.02334.x pmid: 15703061 |
[64] |
HAN Y C, GAO H Y, CHEN H J , et al. The involvement of Papaya CpSBP1 in modulating fruit softening and carotenoid accumulation by repressing CpPME1/2 and CpPDS4[J]. Sci Hortic, 2019,256:108582. DOI: 10.1016/j.scienta.2019.108582.
doi: 10.1016/j.scienta.2019.108582 |
[65] |
HOU H M, YAN Q, WANG X P , et al. A SBP-box gene VpSBP5 from Chinese wild Vitis species responds to Erysiphe necator and defense signaling molecules[J]. Plant Mol Biol Report, 2013,31(6):1261-1270. DOI: 10.1007/s11105-013-0591-2.
doi: 10.1007/s11105-013-0591-2 |
[66] |
HOU H M, JIA H, YAN Q , et al. Overexpression of a SBP-box gene (VpSBP16) from Chinese wild Vitis species in Arabidopsis improves salinity and drought stress tolerance[J]. Int J Mol Sci, 2018,19(4):940. DOI: 10.3390/ijms19040940.
doi: 10.3390/ijms19040940 |
[67] |
LING L Z, ZHANG S D . Unraveling the distribution and evolution of miR156-targeted SPLs in plants by phylogenetic analysis[J]. Plant Divers Resour, 2012,34(1):33. DOI: 10.3724/SP.J.1143.2012.11117.
doi: 10.3724/SP.J.1143.2012.11117 |
[68] |
JAILLON O, AURY J M, NOEL B , et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm Phyla[J]. Nature, 2007,449(7161):463-467. DOI: 10.1038/nature06148.
doi: 10.1038/nature06148 pmid: 17721507 |
[1] | YANG Yong. Systematic classification of gymnosperms: past, present and future [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 14-26. |
[2] | ZHANG Rui, ZHOU Zhenghu, WANG Chuankuan, JIN Ying. Xylem anatomical and hydraulic traits of trees with different wood properties in a temperate forest in northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 229-236. |
[3] | HUANG Yongjian, XUN Hang, ZHANG Bao, YOU Junhao, YAO Xi, TANG Feng. Simultaneous determination of eight phenolic acids in bamboo shoots by HPLC and its applications [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 237-244. |
[4] | DENG Yunfei. Review on the systematics of the family Styracaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 27-35. |
[5] | LI Jialiang, WU Dayu, MAO Kangshan. Taxonomy and diversity of the genus Cupressus: current status and recommendations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 36-45. |
[6] | LI Yongfu, YANG Qinghua, CHEN Lin, ZHANG Min, XIANG Qibai, WANG Xianrong, DUAN Yifan. An infrageneric taxonomic revision of the genus Osmanthus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 58-62. |
[7] | YANG Hao, LIU Chao, ZHUANG Jiayao, ZHANG Shutong, ZHANG Wentao, MAO Guohao. Effects of different carrier bacterial fertilizers on growth, photosynthetic characteristics and soil nutrients of Amorpha fruticosa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 81-89. |
[8] | DING Yong, LIU Xin, ZHANG Jinchi, WANG Yuhao, CHEN Meiling, LI Tao, LIU Xiaowu, ZHOU Yuexiang, SUN Lianhao, LIAO Yi. Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 90-98. |
[9] | WU Yan, HUANG Qing, LIU Xun, ZHENG Rui, CEN Jiabao, DING Bo, ZHANG Yunlin, FU Yuhong. Effects of Pinus massoniana plantation age on soil physical and chemical properties in Karst areas in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 99-107. |
[10] | BU Xiaoting, FU Wei, LI Shuxian, XU Zhibiao, PENG Daqing, XU Linqiao. Effects of rejuvenation and hormone treatment on the rooting of softwood cuttings of Quercus texana and anatomical observations of rooting [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 129-136. |
[11] | DU Jincheng, LI Xinxin, WANG Zeliang, LIU Si, ZHONG Yi, WANG Lihua. Response of physiological indexes of three Olea europaea cultivars to PEG stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 137-143. |
[12] | FANG Jing, ZHANG Shuman, YAN Shanchun, WU Shuai, ZHAO Jiaqi, MENG Zhaojun. Effects of the compound inoculation of two arbuscular mycorrhizal(AM) fungi on the resistance of Populus pseudo-cathayana × P. deltoides leaves to Hyphantria cunea [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 144-154. |
[13] | ZHANG Xinfang, WANG Guangpeng, ZHANG Shuhang, LI Ying, GUO Yan. Screening and analysis of differential secondary metabolites in Castanea mollissima with different levels of resistance to Oligonychus ununguis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 234-240. |
[14] | YANG Hong, YI Xiangui, WANG Xianrong, WU Tong, ZHOU Huajin, CHEN Jie, LI Meng, ZHU Zhaoqing. Prunus discoidea‘Yuanchun’:a new cultivar of cherry blossom [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 275-276. |
[15] | TIAN Mengyang, ZHU Shulin, DOU Quanqin, JI Yanhong. The effects of intercropping of Carya illinoinensis and Camellia sinensis ‘Anjibaicha’ on photosynthetic characteristics of C. sinensis tree during rapid growth period [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 86-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||