JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4): 93-103.doi: 10.12302/j.issn.1000-2006.202209055
Special Issue: 专题报道Ⅲ:智慧林业之森林可视化研究
Previous Articles Next Articles
ZHAO Yugang1(), LIU Wenping1,*(), ZHOU Yan1, CHEN Riqiang1, ZONG Shixiang2, LUO Youqing2
Received:
2022-09-24
Revised:
2022-11-01
Online:
2024-07-30
Published:
2024-08-05
Contact:
LIU Wenping
E-mail:15621377528@163.com;wendyl@vip.163.com
CLC Number:
ZHAO Yugang, LIU Wenping, ZHOU Yan, CHEN Riqiang, ZONG Shixiang, LUO Youqing. UAV forestry land-cover image segmentation method based on attention mechanism and improved DeepLabV3+[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 93-103.
Table 1
Experiment results of different combinations of ASPP connection forms and dilation rates on test dataset"
模型 model | 原始ASPP original ASPP | D-ASPP 模块 | SP-ASPP 模块 | ASPP 扩张率组合 ASPP dilation rate combinations | 模型 参数/MB model parameters | 训练 时间/min training time | 测试 时间/s testing time | 平均像素 精度/% mPA | 平均 交并比/% mIoU |
---|---|---|---|---|---|---|---|---|---|
1 | √ | (6,12,18) | 49.41 | 259 | 23.83 | 95.82 | 78.24 | ||
2 | √ | (6,12,18,24) | 50.43 | 330 | 23.91 | 96.74 | 81.69 | ||
3 | √ | (3,6,9,12) | 50.43 | 333 | 23.66 | 96.81 | 82.01 | ||
4 | √ | (6,12,18,24) | 48.94 | 271 | 25.51 | 96.63 | 82.41 | ||
5 | √ | (3,6,9,12) | 48.94 | 252 | 22.62 | 97.02 | 83.18 |
Table 2
Experiment results of DeepLabV3+ improvements on test dataset"
模型 model | 主干网络 backbone | 原始ASPP original ASPP | SP-ASPP 模块 | 浅层特征 融合分支 shallow feature fusion branche | SA 模块 | ECA 模块 | 训练 时间/min training time | 测试 时间/s testing time | 平均像素 精度/% mPA | 平均 交并比/% mIoU |
---|---|---|---|---|---|---|---|---|---|---|
1 | Xception | √ | 256 | 22.43 | 93.01 | 70.94 | ||||
2 | ResNet101 | √ | 237 | 19.41 | 95.27 | 75.52 | ||||
3 | ResNeSt101 | √ | 259 | 23.83 | 95.82 | 78.24 | ||||
4 | ResNeSt101 | √ | √ | 268 | 23.72 | 96.78 | 82.13 | |||
5 | ResNeSt101 | √ | 252 | 22.62 | 97.02 | 83.18 | ||||
6 | ResNeSt101 | √ | √ | 261 | 23.23 | 96.94 | 83.96 | |||
7 | ResNeSt101 | √ | √ | √ | 270 | 23.97 | 97.01 | 84.02 | ||
8 | ResNeSt101 | √ | √ | √ | 264 | 23.44 | 97.05 | 84.13 | ||
9 | ResNeSt101 | √ | √ | √ | √ | 272 | 24.79 | 97.04 | 85.01 |
Table 3
Experiment results of different semantic segmentation models on test dataset"
语义分割模型 semantic segmentation models | 平均像素 精度/% mPA | 训练时 间/min training time | 测试 时间/s testing time | 平均交 并比/% mIoU | 交并比/% IoU | |||||
---|---|---|---|---|---|---|---|---|---|---|
杨树 Populus sp. | 银杏 Ginkgo biloba | 法国梧桐 Platanus orientalis | 道路 road | 草地 grassland | 裸地 bare groud | |||||
U-Net | 94.01 | 241 | 20.25 | 67.50 | 74.67 | 93.99 | 90.87 | 66.53 | 33.31 | 45.62 |
PSPNet | 93.28 | 608 | 42.93 | 71.59 | 80.18 | 94.18 | 88.37 | 51.94 | 44.17 | 70.69 |
DeepLabV3+ | 93.01 | 256 | 22.43 | 70.94 | 84.67 | 93.12 | 82.05 | 55.75 | 48.32 | 61.74 |
Tree-DeepLab | 97.04 | 272 | 24.79 | 85.01 | 92.55 | 97.01 | 91.95 | 81.53 | 68.64 | 78.35 |
[1] | 王静, 高建中. 林地地块特征对农户林业生产效率的影响[J]. 林业经济问题, 2021, 41(6):577-582. |
WANG J, GAO J Z. The effects of the characteristics of forest land parcels on farmers’ forestry production efficiency[J]. News For Econ, 2021, 41(6):577-582. DOI: 10.16832/j.cnki.1005-9709.20210072. | |
[2] | DALPONTE M, ØRKA H O, GOBAKKEN T, et al. Tree species classification in boreal forests with hyperspectral data[J]. IEEE Trans Geosci Remote Sens, 2013, 51(5):2632-2645. DOI: 10.1109/TGRS.2012.2216272. |
[3] | BLANCO S R, HERAS D B, ARGÜELLO F. Texture extraction techniques for the classification of vegetation species in hyperspectral imagery: bag of words approach based on superpixels[J]. Remote Sens, 2020, 12(16):2633. DOI: 10.3390/rs12162633. |
[4] | THANH NOI P, KAPPAS M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J]. Sensors, 2017, 18(1):18. DOI: 10.3390/s18010018. |
[5] | YUAN Y, HU X Y. Random forest and objected-based classification for forest pest extraction from UAV aerial imagery[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2016, XLI-B1:1093-1098. DOI: 10.5194/isprs-archives-xli-b1-1093-2016. |
[6] | 赵庆展, 江萍, 王学文, 等. 基于无人机高光谱遥感影像的防护林树种分类[J]. 农业机械学报, 2021, 52(11):190-199. |
ZHAO Q Z, JIANG P, WANG X W, et al. Classification of protection forest tree species based on UAV hyperspectral data[J]. Trans Chin Soc Agric Mach, 2021, 52(11):190-199. DOI: 10.6041/j.issn.1000-1298.2021.11.020. | |
[7] | 戴鹏钦, 丁丽霞, 刘丽娟, 等. 基于FCN的无人机可见光影像树种分类[J]. 激光与光电子学进展, 2020, 57(10):36-45. |
DAI P Q, DING L X, LIU L J, et al. Tree species identification based on FCN using the visible images obtained from an unmanned aerial vehicle[J]. Laser Optoelectron Prog, 2020, 57(10):36-45. DOI: 10.3788/LOP57.101001. | |
[8] | 张军国, 冯文钊, 胡春鹤, 等. 无人机航拍林业虫害图像分割复合梯度分水岭算法[J]. 农业工程学报, 2017, 33(14):93-99. |
ZHANG J G, FENG W Z, HU C H, et al. Image segmentation method for forestry unmanned aerial vehicle pest monitoring based on composite gradient watershed algorithm[J]. Trans Chin Soc Agric Eng, 2017, 33(14):93-99. DOI: 10.11975/j.issn.1002-6819.2017.14.013. | |
[9] | 张增, 王兵, 伍小洁, 等. 无人机森林火灾监测中火情检测方法研究[J]. 遥感信息, 2015, 30(1):107-110, 124. |
ZHANG Z, WANG B, WU X J, et al. An algorithm of forest fire detection based on UAV remote sensing[J]. Remote Sens Inf, 2015, 30(1):107-110, 124. DOI: 10.3969/j.issn.1000-3177.2015.01.018. | |
[10] | 刘文萍, 仲亭玉, 宋以宁. 基于无人机图像分析的树木胸径预测[J]. 农业工程学报, 2017, 33(21):99-104. |
LIU W P, ZHONG T Y, SONG Y N. Prediction of trees diameter at breast height based on unmanned aerial vehicle image analysis[J]. Trans Chin Soc Agric Eng, 2017, 33(21):99-104. DOI: 10.11975/j.issn.1002-6819.2017.21.012. | |
[11] | MARTINS J, JUNIOR J M, MENEZES G, et al. Image segmentation and classification with SLIC superpixel and convolutional neural network in forest context[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019:6543-6546. DOI: 10.1109/IGARSS.2019.8898969. |
[12] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015:3431-3440. DOI: 10.1109/CVPR.2015.7298965. |
[13] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015:234-241. DOI: 10.1007/978-3-319-24574-4_28. |
[14] | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017:6230-6239. DOI: 10.1109/CVPR.2017.660. |
[15] | LIN G S, MILAN A, SHEN C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017:5168-5177. DOI: 10.1109/CVPR.2017.549. |
[16] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[DB/OL]. (2014-09-14)[2022-05-25]. https://arXiv.org/abs/1412.7062. DOI: 10.48550/arXiv.1412.7062. |
[17] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4):834-848. DOI: 10.1109/TPAMI.2017.2699184. |
[18] | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[DB/OL]. (2017-07-19)[2022-05-05]. https://arXiv.org/abs/1706.05587. DOI: 10.48550/arXiv.1706.05587. |
[19] | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision. Cham: Springer, 2018:833-851. DOI: 10.1007/978-3-030-01234-2_49. |
[20] | 韩蕊, 慕涛阳, 赵伟, 等. 基于无人机多光谱影像的柑橘树冠分割方法研究[J]. 林业工程学报, 2021, 6(5):147-153. |
HAN R, MU T Y, ZHAO W, et al. Research on citrus canopy segmentation method based on UAV multispectral image[J]. Journal of Forestry Engineering, 2021, 6(5):147-153. DOI: 10.13360/j.issn.2096-1359.202011021. | |
[21] | 刘文定, 田洪宝, 谢将剑, 等. 基于全卷积神经网络的林区航拍图像虫害区域识别方法[J]. 农业机械学报, 2019, 50(3):179-185. |
LIU W D, TIAN H B, XIE J J, et al. Identification methods for forest pest areas of UAV aerial photography based on fully convolutional networks[J]. Trans Chin Soc Agric Mach, 2019, 50(3):179-185. DOI: 10.6041/j.issn.1000-1298.2019.03.019. | |
[22] | 徐辉, 祝玉华, 甄彤, 等. 深度神经网络图像语义分割方法综述[J]. 计算机科学与探索, 2021, 15(1):47-59. |
XU H, ZHU Y H, ZHEN T, et al. Survey of image semantic segmentation methods based on deep neural network[J]. J Front Comput Sci Technol, 2021, 15(1):47-59. DOI: 10.3778/j.issn.1673-9418.2004039. | |
[23] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018:7132-7141. DOI: 10.1109/CVPR.2018.00745. |
[24] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018:3-19. DOI: 10.1007/978-3-030-01234-2_1. |
[25] | WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020:11531-11539. DOI: 10.1109/CVPR42600.2020.01155. |
[26] | ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New Orleans, LA, USA: IEEE, 2022:2735-2745. DOI: 10.1109/CVPRW56347.2022.00309. |
[27] | CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017:1800-1807. DOI: 10.1109/CVPR.2017.195. |
[28] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016:770-778. DOI: 10.1109/CVPR.2016.90. |
[29] | YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018:3684-3692. DOI: 10.1109/CVPR.2018.00388. |
[30] | 李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5):180-187. |
LI D, ZHANG J J, ZHAO M X. Extraction of stand factors in UAV image based on FCM and watershed algorithm[J]. Sci Silvae Sin, 2019, 55(5):180-187. DOI: 10.11707/j.1001-7488.20190520. | |
[31] | 刘旭光, 肖啸, 兰玉彬, 等. 应用可见光遥感影像的林区植被分割方法[J]. 东北林业大学学报, 2023, 51(4):62-67. |
LIU X G, XIAO X, LAN Y B, et al. Forest vegetation segmentation method with UAV visible light remote sensing images[J]. Journal of Northeast Foresrty University, 2023, 51(4):62-67. DOI: 10.13759/j.cnki.dlxb.2023.04.008. |
[1] | NIU Hongjian, LIU Wenping, CHEN Riqiang, ZONG Shixiang, LUO Youqing. Dehaze algorithm for woodland UAV images based on Resnet [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 175-181. |
[2] | YANG Kun, FAN Xijian, BO Weihao, LIU Jie, WANG Junling. Plant disease and pest detection based on visiual attention enhancement [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 11-18. |
[3] | CHENG Jianbin,WANG Jibin, WANG Nianjin,YAO Xiaohua. The fruit-xenia effects of Carya illinoensis pollination on C. cathayensis assisted by unmanned aerial vehicle(UAV) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 199-202. |
[4] | TAO Huan, LI Cunjun, XIE Chunchun, ZHOU Jingping, HUAI Heju, JIANG Liya, LI Fengtao. Recognition of red-attack pine trees from UAV imagery based on the HSV threshold method [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 99-106. |
[5] | DAI Tingting, MA Jun, XU Yannan. Application of unmanned aerial vehicle(UAV)image automatic stitching in landscape planning based on Agisoft PhotoScan [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 165-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||